diff --git a/README.md b/README.md index d79ea2b..bcc9f2c 100644 --- a/README.md +++ b/README.md @@ -370,25 +370,32 @@ an Open-Source Package for Regression, Counterfactual Estimation, Evaluation and **Additionally, `auton-survival` implements the following methodologies:** -[2] [Deep Survival Machines: -Fully Parametric Survival Regression and -Representation Learning for Censored Data with Competing Risks. -IEEE Journal of Biomedical and Health Informatics (2021)](https://arxiv.org/abs/2003.01176) +[2] [Counterfactual Phenotyping with Censored Time-to-Events (2022)](https://arxiv.org/abs/2202.11089) ``` - @article{nagpal2021dsm, - title={Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks}, - author={Nagpal, Chirag and Li, Xinyu and Dubrawski, Artur}, - journal={IEEE Journal of Biomedical and Health Informatics}, - volume={25}, - number={8}, - pages={3163--3175}, + @article{nagpal2022counterfactual, + title={Counterfactual Phenotyping with Censored Time-to-Events}, + author={Nagpal, Chirag and Goswami, Mononito and Dufendach, Keith and Dubrawski, Artur}, + journal={arXiv preprint arXiv:2202.11089}, + year={2022} + } +``` + +[3] [Deep Cox Mixtures for Survival Regression. Conference on Machine Learning for +Healthcare (2021)](https://arxiv.org/abs/2101.06536) + +``` + @inproceedings{nagpal2021dcm, + title={Deep Cox mixtures for survival regression}, + author={Nagpal, Chirag and Yadlowsky, Steve and Rostamzadeh, Negar and Heller, Katherine}, + booktitle={Machine Learning for Healthcare Conference}, + pages={674--708}, year={2021}, - publisher={IEEE} + organization={PMLR} } ``` -[3] [Deep Parametric Time-to-Event Regression with Time-Varying Covariates. AAAI +[4] [Deep Parametric Time-to-Event Regression with Time-Varying Covariates. AAAI Spring Symposium (2021)](http://proceedings.mlr.press/v146/nagpal21a.html) ``` @@ -401,30 +408,27 @@ Spring Symposium (2021)](http://proceedings.mlr.press/v146/nagpal21a.html) } ``` -[4] [Deep Cox Mixtures for Survival Regression. Conference on Machine Learning for -Healthcare (2021)](https://arxiv.org/abs/2101.06536) +[5] [Deep Survival Machines: +Fully Parametric Survival Regression and +Representation Learning for Censored Data with Competing Risks. +IEEE Journal of Biomedical and Health Informatics (2021)](https://arxiv.org/abs/2003.01176) ``` - @inproceedings{nagpal2021dcm, - title={Deep Cox mixtures for survival regression}, - author={Nagpal, Chirag and Yadlowsky, Steve and Rostamzadeh, Negar and Heller, Katherine}, - booktitle={Machine Learning for Healthcare Conference}, - pages={674--708}, + @article{nagpal2021dsm, + title={Deep survival machines: Fully parametric survival regression and representation learning for censored data with competing risks}, + author={Nagpal, Chirag and Li, Xinyu and Dubrawski, Artur}, + journal={IEEE Journal of Biomedical and Health Informatics}, + volume={25}, + number={8}, + pages={3163--3175}, year={2021}, - organization={PMLR} + publisher={IEEE} } ``` -[5] [Counterfactual Phenotyping with Censored Time-to-Events (2022)](https://arxiv.org/abs/2202.11089) -``` - @article{nagpal2022counterfactual, - title={Counterfactual Phenotyping with Censored Time-to-Events}, - author={Nagpal, Chirag and Goswami, Mononito and Dufendach, Keith and Dubrawski, Artur}, - journal={arXiv preprint arXiv:2202.11089}, - year={2022} - } -``` + +