Skip to content

Commit df5d48e

Browse files
committed
Rename rval to return_value or run_value
1 parent 0f1f38a commit df5d48e

File tree

12 files changed

+157
-155
lines changed

12 files changed

+157
-155
lines changed

autosklearn/automl.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -2138,10 +2138,10 @@ def has_key(rv, key):
21382138
return rv.additional_info and key in rv.additional_info
21392139

21402140
table_dict = {}
2141-
for rkey, rval in self.runhistory_.data.items():
2142-
if has_key(rval, "num_run"):
2143-
model_id = rval.additional_info["num_run"]
2144-
table_dict[model_id] = {"model_id": model_id, "cost": rval.cost}
2141+
for run_key, run_val in self.runhistory_.data.items():
2142+
if has_key(run_val, "num_run"):
2143+
model_id = run_val.additional_info["num_run"]
2144+
table_dict[model_id] = {"model_id": model_id, "cost": run_val.cost}
21452145

21462146
# Checking if the dictionary is empty
21472147
if not table_dict:

autosklearn/estimators.py

Lines changed: 17 additions & 17 deletions
Original file line numberDiff line numberDiff line change
@@ -1041,31 +1041,31 @@ def additional_info_has_key(rv, key):
10411041
return rv.additional_info and key in rv.additional_info
10421042

10431043
model_runs = {}
1044-
for rkey, rval in self.automl_.runhistory_.data.items():
1045-
if not additional_info_has_key(rval, "num_run"):
1044+
for run_key, run_val in self.automl_.runhistory_.data.items():
1045+
if not additional_info_has_key(run_val, "num_run"):
10461046
continue
10471047
else:
1048-
model_key = rval.additional_info["num_run"]
1048+
model_key = run_val.additional_info["num_run"]
10491049
model_run = {
1050-
"model_id": rval.additional_info["num_run"],
1051-
"seed": rkey.seed,
1052-
"budget": rkey.budget,
1053-
"duration": rval.time,
1054-
"config_id": rkey.config_id,
1055-
"start_time": rval.starttime,
1056-
"end_time": rval.endtime,
1057-
"status": str(rval.status),
1058-
"train_loss": rval.additional_info["train_loss"]
1059-
if additional_info_has_key(rval, "train_loss")
1050+
"model_id": run_val.additional_info["num_run"],
1051+
"seed": run_key.seed,
1052+
"budget": run_key.budget,
1053+
"duration": run_val.time,
1054+
"config_id": run_key.config_id,
1055+
"start_time": run_val.starttime,
1056+
"end_time": run_val.endtime,
1057+
"status": str(run_val.status),
1058+
"train_loss": run_val.additional_info["train_loss"]
1059+
if additional_info_has_key(run_val, "train_loss")
10601060
else None,
1061-
"config_origin": rval.additional_info["configuration_origin"]
1062-
if additional_info_has_key(rval, "configuration_origin")
1061+
"config_origin": run_val.additional_info["configuration_origin"]
1062+
if additional_info_has_key(run_val, "configuration_origin")
10631063
else None,
10641064
}
10651065
if num_metrics == 1:
1066-
model_run["cost"] = rval.cost
1066+
model_run["cost"] = run_val.cost
10671067
else:
1068-
for cost_idx, cost in enumerate(rval.cost):
1068+
for cost_idx, cost in enumerate(run_val.cost):
10691069
model_run[f"cost_{cost_idx}"] = cost
10701070
model_runs[model_key] = model_run
10711071

autosklearn/evaluation/__init__.py

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -71,7 +71,7 @@ def fit_predict_try_except_decorator(
7171
# File "auto-sklearn/autosklearn/evaluation/train_evaluator.py", line 616, in fit_predict_and_loss, # noqa E501
7272
# status=status
7373
# File "auto-sklearn/autosklearn/evaluation/abstract_evaluator.py", line 320, in finish_up # noqa E501
74-
# self.queue.put(rval_dict)
74+
# self.queue.put(return_value_dict)
7575
# File "miniconda/3-4.5.4/envs/autosklearn/lib/python3.7/multiprocessing/queues.py", line 87, in put # noqa E501
7676
# self._start_thread()
7777
# File "miniconda/3-4.5.4/envs/autosklearn/lib/python3.7/multiprocessing/queues.py", line 170, in _start_thread # noqa E501

autosklearn/evaluation/abstract_evaluator.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -429,15 +429,15 @@ def finish_up(
429429
if test_loss is not None:
430430
additional_run_info["test_loss"] = test_loss
431431

432-
rval_dict = {
432+
return_value_dict = {
433433
"loss": loss,
434434
"additional_run_info": additional_run_info,
435435
"status": status,
436436
}
437437
if final_call:
438-
rval_dict["final_queue_element"] = True
438+
return_value_dict["final_queue_element"] = True
439439

440-
self.queue.put(rval_dict)
440+
self.queue.put(return_value_dict)
441441
return self.duration, loss_, self.seed, additional_run_info_
442442

443443
def calculate_auxiliary_losses(

autosklearn/evaluation/util.py

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -12,19 +12,19 @@ def read_queue(
1212
stack = []
1313
while True:
1414
try:
15-
rval = queue_.get(timeout=1)
15+
return_value = queue_.get(timeout=1)
1616
except queue.Empty:
1717
break
1818

1919
# Check if there is a special placeholder value which tells us that
2020
# we don't have to wait until the queue times out in order to
2121
# retrieve the final value!
22-
if "final_queue_element" in rval:
23-
del rval["final_queue_element"]
22+
if "final_queue_element" in return_value:
23+
del return_value["final_queue_element"]
2424
do_break = True
2525
else:
2626
do_break = False
27-
stack.append(rval)
27+
stack.append(return_value)
2828
if do_break:
2929
break
3030

autosklearn/experimental/selector.py

Lines changed: 8 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -297,17 +297,17 @@ def _predict(
297297
wins = wins / np.sum(wins)
298298
predictions[X.index[x_idx]] = wins
299299

300-
rval = {
300+
return_value = {
301301
task_id: {
302302
strategy: predictions[task_id][strategy_idx]
303303
for strategy_idx, strategy in enumerate(self.strategies_)
304304
}
305305
for task_id in X.index
306306
}
307-
rval = pd.DataFrame(rval).transpose().astype(float)
308-
rval = rval[self.strategies_]
309-
rval = rval.fillna(0.0)
310-
return rval
307+
return_value = pd.DataFrame(return_value).transpose().astype(float)
308+
return_value = return_value[self.strategies_]
309+
return_value = return_value.fillna(0.0)
310+
return return_value
311311

312312
def fit_pairwise_model(self, X, y, weights, rng, configuration):
313313
raise NotImplementedError()
@@ -346,14 +346,14 @@ def fit(
346346
) -> None:
347347
self.X_ = X
348348
self.strategies_ = y.columns
349-
self.rval_ = np.array(
349+
self.return_value_ = np.array(
350350
[
351351
(len(self.strategies_) - self.default_strategies.index(strategy) - 1)
352352
/ (len(self.strategies_) - 1)
353353
for strategy in self.strategies_
354354
]
355355
)
356-
self.rval_ = self.rval_ / np.sum(self.rval_)
356+
self.return_value_ = self.return_value_ / np.sum(self.return_value_)
357357
self.selector.fit(X, y, minima, maxima)
358358

359359
def _predict(
@@ -377,7 +377,7 @@ def _predict(
377377
prediction.loc[task_id] = pd.Series(
378378
{
379379
strategy: value
380-
for strategy, value in zip(self.strategies_, self.rval_)
380+
for strategy, value in zip(self.strategies_, self.return_value_)
381381
}
382382
)
383383

autosklearn/metalearning/metalearning/kNearestDatasets/kND.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -122,17 +122,17 @@ def kNearestDatasets(self, x, k=1, return_distance=False):
122122

123123
assert k == neighbor_indices.shape[1]
124124

125-
rval = [
125+
return_value = [
126126
self.metafeatures.index[i]
127127
# Neighbor indices is 2d, each row is the indices for one
128128
# dataset in x.
129129
for i in neighbor_indices[0]
130130
]
131131

132132
if return_distance is False:
133-
return rval
133+
return return_value
134134
else:
135-
return rval, distances[0]
135+
return return_value, distances[0]
136136

137137
def kBestSuggestions(self, x, k=1, exclude_double_configurations=True):
138138
assert type(x) == pd.Series

autosklearn/pipeline/base.py

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -495,15 +495,15 @@ def __repr__(self):
495495
dataset_properties_string.append("}")
496496
dataset_properties_string = "".join(dataset_properties_string)
497497

498-
rval = "%s(%s,\n%s)" % (
498+
return_value = "%s(%s,\n%s)" % (
499499
class_name,
500500
configuration,
501501
dataset_properties_string,
502502
)
503503
else:
504-
rval = "%s(%s)" % (class_name, configuration_string)
504+
return_value = "%s(%s)" % (class_name, configuration_string)
505505

506-
return rval
506+
return return_value
507507

508508
def _get_pipeline_steps(self, dataset_properties):
509509
raise NotImplementedError()

scripts/2015_nips_paper/run/score_ensemble.py

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -227,14 +227,14 @@ def evaluate(input_directory, validation_files, test_files, ensemble_size=50):
227227

228228
ensemble_time = time.time() - start
229229

230-
rval = {
230+
return_value = {
231231
"ensemble_time": ensemble_time,
232232
"time_function_evaluation": time_function_evaluation,
233233
"ensemble_error": ensemble_error,
234234
"ensemble_test_error": ensemble_test_error,
235235
}
236236

237-
return rval
237+
return return_value
238238

239239

240240
if __name__ == "__main__":

test/test_evaluation/test_test_evaluator.py

Lines changed: 19 additions & 19 deletions
Original file line numberDiff line numberDiff line change
@@ -80,10 +80,10 @@ def test_datasets(self):
8080
)
8181

8282
evaluator.fit_predict_and_loss()
83-
rval = read_queue(evaluator.queue)
84-
self.assertEqual(len(rval), 1)
85-
self.assertEqual(len(rval[0]), 3)
86-
self.assertTrue(np.isfinite(rval[0]["loss"]))
83+
return_value = read_queue(evaluator.queue)
84+
self.assertEqual(len(return_value), 1)
85+
self.assertEqual(len(return_value[0]), 3)
86+
self.assertTrue(np.isfinite(return_value[0]["loss"]))
8787

8888

8989
class FunctionsTest(unittest.TestCase):
@@ -124,11 +124,11 @@ def test_eval_test(self):
124124
port=self.port,
125125
additional_components=dict(),
126126
)
127-
rval = read_queue(self.queue)
128-
self.assertEqual(len(rval), 1)
129-
self.assertAlmostEqual(rval[0]["loss"], 0.07999999999999996)
130-
self.assertEqual(rval[0]["status"], StatusType.SUCCESS)
131-
self.assertNotIn("bac_metric", rval[0]["additional_run_info"])
127+
return_value = read_queue(self.queue)
128+
self.assertEqual(len(return_value), 1)
129+
self.assertAlmostEqual(return_value[0]["loss"], 0.07999999999999996)
130+
self.assertEqual(return_value[0]["status"], StatusType.SUCCESS)
131+
self.assertNotIn("bac_metric", return_value[0]["additional_run_info"])
132132

133133
def test_eval_test_multi_objective(self):
134134
metrics = {
@@ -151,12 +151,12 @@ def test_eval_test_multi_objective(self):
151151
port=self.port,
152152
additional_components=dict(),
153153
)
154-
rval = read_queue(self.queue)
155-
self.assertEqual(len(rval), 1)
154+
return_value = read_queue(self.queue)
155+
self.assertEqual(len(return_value), 1)
156156
for metric, loss in metrics.items():
157-
self.assertAlmostEqual(rval[0]["loss"][metric.name], loss)
158-
self.assertEqual(rval[0]["status"], StatusType.SUCCESS)
159-
self.assertNotIn("bac_metric", rval[0]["additional_run_info"])
157+
self.assertAlmostEqual(return_value[0]["loss"][metric.name], loss)
158+
self.assertEqual(return_value[0]["status"], StatusType.SUCCESS)
159+
self.assertNotIn("bac_metric", return_value[0]["additional_run_info"])
160160

161161
def test_eval_test_all_loss_functions(self):
162162
eval_t(
@@ -175,8 +175,8 @@ def test_eval_test_all_loss_functions(self):
175175
port=self.port,
176176
additional_components=dict(),
177177
)
178-
rval = read_queue(self.queue)
179-
self.assertEqual(len(rval), 1)
178+
return_value = read_queue(self.queue)
179+
self.assertEqual(len(return_value), 1)
180180

181181
# Note: All metric here should be minimized
182182
fixture = {
@@ -195,7 +195,7 @@ def test_eval_test_all_loss_functions(self):
195195
"num_run": -1,
196196
}
197197

198-
additional_run_info = rval[0]["additional_run_info"]
198+
additional_run_info = return_value[0]["additional_run_info"]
199199
for key, value in fixture.items():
200200
self.assertAlmostEqual(additional_run_info[key], fixture[key], msg=key)
201201
self.assertEqual(
@@ -204,5 +204,5 @@ def test_eval_test_all_loss_functions(self):
204204
msg=sorted(additional_run_info.items()),
205205
)
206206
self.assertIn("duration", additional_run_info)
207-
self.assertAlmostEqual(rval[0]["loss"], 0.040000000000000036)
208-
self.assertEqual(rval[0]["status"], StatusType.SUCCESS)
207+
self.assertAlmostEqual(return_value[0]["loss"], 0.040000000000000036)
208+
self.assertEqual(return_value[0]["status"], StatusType.SUCCESS)

0 commit comments

Comments
 (0)