-
Notifications
You must be signed in to change notification settings - Fork 215
/
Copy pathrun_kbert_ner.py
423 lines (348 loc) · 16.8 KB
/
run_kbert_ner.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
# -*- encoding:utf -*-
"""
This script provides an K-BERT example for NER.
"""
import random
import argparse
import torch
import torch.nn as nn
from torch.nn import CrossEntropyLoss
from uer.model_builder import build_model
from uer.utils.config import load_hyperparam
from uer.utils.optimizers import BertAdam
from uer.utils.constants import *
from uer.utils.vocab import Vocab
from uer.utils.seed import set_seed
from uer.model_saver import save_model
import numpy as np
from brain import KnowledgeGraph
class BertTagger(nn.Module):
def __init__(self, args, model):
super(BertTagger, self).__init__()
self.embedding = model.embedding
self.encoder = model.encoder
self.target = model.target
self.labels_num = args.labels_num
self.output_layer = nn.Linear(args.hidden_size, self.labels_num)
self.softmax = nn.LogSoftmax(dim=-1)
def forward(self, src, label, mask, pos=None, vm=None):
"""
Args:
src: [batch_size x seq_length]
label: [batch_size x seq_length]
mask: [batch_size x seq_length]
Returns:
loss: Sequence labeling loss.
correct: Number of labels that are predicted correctly.
predict: Predicted label.
label: Gold label.
"""
# Embedding.
emb = self.embedding(src, mask, pos)
# Encoder.
output = self.encoder(emb, mask, vm)
# Target.
output = self.output_layer(output)
output = output.contiguous().view(-1, self.labels_num)
output = self.softmax(output)
label = label.contiguous().view(-1,1)
label_mask = (label > 0).float().to(torch.device(label.device))
one_hot = torch.zeros(label_mask.size(0), self.labels_num). \
to(torch.device(label.device)). \
scatter_(1, label, 1.0)
numerator = -torch.sum(output * one_hot, 1)
label_mask = label_mask.contiguous().view(-1)
label = label.contiguous().view(-1)
numerator = torch.sum(label_mask * numerator)
denominator = torch.sum(label_mask) + 1e-6
loss = numerator / denominator
predict = output.argmax(dim=-1)
correct = torch.sum(
label_mask * (predict.eq(label)).float()
)
return loss, correct, predict, label
def main():
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
# Path options.
parser.add_argument("--pretrained_model_path", default=None, type=str,
help="Path of the pretrained model.")
parser.add_argument("--output_model_path", default="./models/tagger_model.bin", type=str,
help="Path of the output model.")
parser.add_argument("--vocab_path", default="./models/google_vocab.txt", type=str,
help="Path of the vocabulary file.")
parser.add_argument("--train_path", type=str, required=True,
help="Path of the trainset.")
parser.add_argument("--dev_path", type=str, required=True,
help="Path of the devset.")
parser.add_argument("--test_path", type=str, required=True,
help="Path of the testset.")
parser.add_argument("--config_path", default="./models/google_config.json", type=str,
help="Path of the config file.")
# Model options.
parser.add_argument("--batch_size", type=int, default=16,
help="Batch_size.")
parser.add_argument("--seq_length", default=256, type=int,
help="Sequence length.")
parser.add_argument("--encoder", choices=["bert", "lstm", "gru", \
"cnn", "gatedcnn", "attn", \
"rcnn", "crnn", "gpt", "bilstm"], \
default="bert", help="Encoder type.")
parser.add_argument("--bidirectional", action="store_true", help="Specific to recurrent model.")
# Subword options.
parser.add_argument("--subword_type", choices=["none", "char"], default="none",
help="Subword feature type.")
parser.add_argument("--sub_vocab_path", type=str, default="models/sub_vocab.txt",
help="Path of the subword vocabulary file.")
parser.add_argument("--subencoder", choices=["avg", "lstm", "gru", "cnn"], default="avg",
help="Subencoder type.")
parser.add_argument("--sub_layers_num", type=int, default=2, help="The number of subencoder layers.")
# Optimizer options.
parser.add_argument("--learning_rate", type=float, default=2e-5,
help="Learning rate.")
parser.add_argument("--warmup", type=float, default=0.1,
help="Warm up value.")
# Training options.
parser.add_argument("--dropout", type=float, default=0.1,
help="Dropout.")
parser.add_argument("--epochs_num", type=int, default=5,
help="Number of epochs.")
parser.add_argument("--report_steps", type=int, default=100,
help="Specific steps to print prompt.")
parser.add_argument("--seed", type=int, default=7,
help="Random seed.")
# kg
parser.add_argument("--kg_name", required=True, help="KG name or path")
args = parser.parse_args()
# Load the hyperparameters of the config file.
args = load_hyperparam(args)
set_seed(args.seed)
labels_map = {"[PAD]": 0, "[ENT]": 1}
begin_ids = []
# Find tagging labels
with open(args.train_path, mode="r", encoding="utf-8") as f:
for line_id, line in enumerate(f):
if line_id == 0:
continue
labels = line.strip().split("\t")[1].split()
for l in labels:
if l not in labels_map:
if l.startswith("B") or l.startswith("S"):
begin_ids.append(len(labels_map))
labels_map[l] = len(labels_map)
print("Labels: ", labels_map)
args.labels_num = len(labels_map)
# Load vocabulary.
vocab = Vocab()
vocab.load(args.vocab_path)
args.vocab = vocab
# Build knowledge graph.
if args.kg_name == 'none':
spo_files = []
else:
spo_files = [args.kg_name]
kg = KnowledgeGraph(spo_files=spo_files, predicate=False)
# Build bert model.
# A pseudo target is added.
args.target = "bert"
model = build_model(args)
# Load or initialize parameters.
if args.pretrained_model_path is not None:
# Initialize with pretrained model.
model.load_state_dict(torch.load(args.pretrained_model_path), strict=False)
else:
# Initialize with normal distribution.
for n, p in list(model.named_parameters()):
if 'gamma' not in n and 'beta' not in n:
p.data.normal_(0, 0.02)
# Build sequence labeling model.
model = BertTagger(args, model)
# For simplicity, we use DataParallel wrapper to use multiple GPUs.
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
if torch.cuda.device_count() > 1:
print("{} GPUs are available. Let's use them.".format(torch.cuda.device_count()))
model = nn.DataParallel(model)
model = model.to(device)
# Datset loader.
def batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vm_ids, tag_ids):
instances_num = input_ids.size()[0]
for i in range(instances_num // batch_size):
input_ids_batch = input_ids[i*batch_size: (i+1)*batch_size, :]
label_ids_batch = label_ids[i*batch_size: (i+1)*batch_size, :]
mask_ids_batch = mask_ids[i*batch_size: (i+1)*batch_size, :]
pos_ids_batch = pos_ids[i*batch_size: (i+1)*batch_size, :]
vm_ids_batch = vm_ids[i*batch_size: (i+1)*batch_size, :, :]
tag_ids_batch = tag_ids[i*batch_size: (i+1)*batch_size, :]
yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch, tag_ids_batch
if instances_num > instances_num // batch_size * batch_size:
input_ids_batch = input_ids[instances_num//batch_size*batch_size:, :]
label_ids_batch = label_ids[instances_num//batch_size*batch_size:, :]
mask_ids_batch = mask_ids[instances_num//batch_size*batch_size:, :]
pos_ids_batch = pos_ids[instances_num//batch_size*batch_size:, :]
vm_ids_batch = vm_ids[instances_num//batch_size*batch_size:, :, :]
tag_ids_batch = tag_ids[instances_num//batch_size*batch_size:, :]
yield input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch, tag_ids_batch
# Read dataset.
def read_dataset(path):
dataset = []
with open(path, mode="r", encoding="utf-8") as f:
f.readline()
tokens, labels = [], []
for line_id, line in enumerate(f):
tokens, labels = line.strip().split("\t")
text = ''.join(tokens.split(" "))
tokens, pos, vm, tag = kg.add_knowledge_with_vm([text], add_pad=True, max_length=args.seq_length)
tokens = tokens[0]
pos = pos[0]
vm = vm[0].astype("bool")
tag = tag[0]
tokens = [vocab.get(t) for t in tokens]
labels = [labels_map[l] for l in labels.split(" ")]
mask = [1] * len(tokens)
new_labels = []
j = 0
for i in range(len(tokens)):
if tag[i] == 0 and tokens[i] != PAD_ID:
new_labels.append(labels[j])
j += 1
elif tag[i] == 1 and tokens[i] != PAD_ID: # 是添加的实体
new_labels.append(labels_map['[ENT]'])
else:
new_labels.append(labels_map[PAD_TOKEN])
dataset.append([tokens, new_labels, mask, pos, vm, tag])
return dataset
# Evaluation function.
def evaluate(args, is_test):
if is_test:
dataset = read_dataset(args.test_path)
else:
dataset = read_dataset(args.dev_path)
input_ids = torch.LongTensor([sample[0] for sample in dataset])
label_ids = torch.LongTensor([sample[1] for sample in dataset])
mask_ids = torch.LongTensor([sample[2] for sample in dataset])
pos_ids = torch.LongTensor([sample[3] for sample in dataset])
vm_ids = torch.BoolTensor([sample[4] for sample in dataset])
tag_ids = torch.LongTensor([sample[5] for sample in dataset])
instances_num = input_ids.size(0)
batch_size = args.batch_size
if is_test:
print("Batch size: ", batch_size)
print("The number of test instances:", instances_num)
correct = 0
gold_entities_num = 0
pred_entities_num = 0
confusion = torch.zeros(len(labels_map), len(labels_map), dtype=torch.long)
model.eval()
for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch, tag_ids_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vm_ids, tag_ids)):
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
pos_ids_batch = pos_ids_batch.to(device)
tag_ids_batch = tag_ids_batch.to(device)
vm_ids_batch = vm_ids_batch.long().to(device)
loss, _, pred, gold = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch)
for j in range(gold.size()[0]):
if gold[j].item() in begin_ids:
gold_entities_num += 1
for j in range(pred.size()[0]):
if pred[j].item() in begin_ids and gold[j].item() != labels_map["[PAD]"]:
pred_entities_num += 1
pred_entities_pos = []
gold_entities_pos = []
start, end = 0, 0
for j in range(gold.size()[0]):
if gold[j].item() in begin_ids:
start = j
for k in range(j+1, gold.size()[0]):
if gold[k].item() == labels_map['[ENT]']:
continue
if gold[k].item() == labels_map["[PAD]"] or gold[k].item() == labels_map["O"] or gold[k].item() in begin_ids:
end = k - 1
break
else:
end = gold.size()[0] - 1
gold_entities_pos.append((start, end))
for j in range(pred.size()[0]):
if pred[j].item() in begin_ids and gold[j].item() != labels_map["[PAD]"] and gold[j].item() != labels_map["[ENT]"]:
start = j
for k in range(j+1, pred.size()[0]):
if gold[k].item() == labels_map['[ENT]']:
continue
if pred[k].item() == labels_map["[PAD]"] or pred[k].item() == labels_map["O"] or pred[k].item() in begin_ids:
end = k - 1
break
else:
end = pred.size()[0] - 1
pred_entities_pos.append((start, end))
for entity in pred_entities_pos:
if entity not in gold_entities_pos:
continue
else:
correct += 1
print("Report precision, recall, and f1:")
p = correct/pred_entities_num
r = correct/gold_entities_num
f1 = 2*p*r/(p+r)
print("{:.3f}, {:.3f}, {:.3f}".format(p,r,f1))
return f1
# Training phase.
print("Start training.")
instances = read_dataset(args.train_path)
input_ids = torch.LongTensor([ins[0] for ins in instances])
label_ids = torch.LongTensor([ins[1] for ins in instances])
mask_ids = torch.LongTensor([ins[2] for ins in instances])
pos_ids = torch.LongTensor([ins[3] for ins in instances])
vm_ids = torch.BoolTensor([ins[4] for ins in instances])
tag_ids = torch.LongTensor([ins[5] for ins in instances])
instances_num = input_ids.size(0)
batch_size = args.batch_size
train_steps = int(instances_num * args.epochs_num / batch_size) + 1
print("Batch size: ", batch_size)
print("The number of training instances:", instances_num)
param_optimizer = list(model.named_parameters())
no_decay = ['bias', 'gamma', 'beta']
optimizer_grouped_parameters = [
{'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.01},
{'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay_rate': 0.0}
]
optimizer = BertAdam(optimizer_grouped_parameters, lr=args.learning_rate, warmup=args.warmup, t_total=train_steps)
total_loss = 0.
f1 = 0.0
best_f1 = 0.0
for epoch in range(1, args.epochs_num+1):
model.train()
for i, (input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch, tag_ids_batch) in enumerate(batch_loader(batch_size, input_ids, label_ids, mask_ids, pos_ids, vm_ids, tag_ids)):
model.zero_grad()
input_ids_batch = input_ids_batch.to(device)
label_ids_batch = label_ids_batch.to(device)
mask_ids_batch = mask_ids_batch.to(device)
pos_ids_batch = pos_ids_batch.to(device)
tag_ids_batch = tag_ids_batch.to(device)
vm_ids_batch = vm_ids_batch.long().to(device)
loss, _, _, _ = model(input_ids_batch, label_ids_batch, mask_ids_batch, pos_ids_batch, vm_ids_batch)
if torch.cuda.device_count() > 1:
loss = torch.mean(loss)
total_loss += loss.item()
if (i + 1) % args.report_steps == 0:
print("Epoch id: {}, Training steps: {}, Avg loss: {:.3f}".format(epoch, i+1, total_loss / args.report_steps))
total_loss = 0.
loss.backward()
optimizer.step()
# Evaluation phase.
print("Start evaluate on dev dataset.")
f1 = evaluate(args, False)
print("Start evaluation on test dataset.")
evaluate(args, True)
if f1 > best_f1:
best_f1 = f1
save_model(model, args.output_model_path)
else:
continue
# Evaluation phase.
print("Final evaluation on test dataset.")
if torch.cuda.device_count() > 1:
model.module.load_state_dict(torch.load(args.output_model_path))
else:
model.load_state_dict(torch.load(args.output_model_path))
evaluate(args, True)
if __name__ == "__main__":
main()