-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathfit.py
346 lines (277 loc) · 13 KB
/
fit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
"""
Classes and functions for performing fits an calculating limit contours
"""
from .fmath import *
from scipy.stats import chi2, norm
from scipy.signal import savgol_filter
def TwoSidedGridSearch(generator, observations, param_grid, background=None, target_cl=0.90,
ddof=0, verbose=False, delta_chi2=True):
# This is a brute-force grid search for the upper and lower limit CLs.
lower_cl = param_grid[0]
upper_cl = param_grid[-1]
def statistic(param):
if background is not None:
return np.sum(power(generator(param) + background - observations, 2)/background)
elif background is not None and delta_chi2 == False:
return chisquare(generator(param) + background, observations, ddof)[0]
else:
return np.sum(generator(param))
stop_value = chi2.ppf(target_cl, observations.shape[0]) - observations.shape[0] \
if background is not None else 2.3
if delta_chi2:
stop_value = 2.71
# lower bound
if verbose:
print("getting LOWER BOUND...")
for i, x in enumerate(param_grid):
stat = statistic(x)
if stat > stop_value:
lower_cl = x
if verbose:
print("chi2 = ", stat)
print("found lower cl = ", lower_cl)
break
# upper bound
if verbose:
print("getting UPPER BOUND...")
for i, x in enumerate(param_grid[::-1]):
stat = statistic(x)
if stat > stop_value:
upper_cl = x
if verbose:
print("chi2 = ", stat)
print("found upper cl = ", upper_cl)
break
if lower_cl == param_grid[0] and upper_cl == param_grid[-1]:
lower_cl = None
upper_cl = None
return lower_cl, upper_cl
def binary_search(test_function, stop_value, lower_edge, upper_edge, tolerance=0.1,
is_increasing=True, verbose=False):
# test_function(x): single variable test statistic function of parameter x
# stop_value: the target value of test_function(x_final)
# tolerance: the diference |test_function(x) - test_function(x_final)| allowed
# upper_edge and lower_edge: the range of x values to test
# is_increasing: True if test_function is expected to increase with x, False otherwise
# test_function is assumed to be monotonic over the range x ~ [lower_edge, upper_edge]
if verbose:
print("starting binary search")
x_upper = upper_edge
x_lower = lower_edge
x = x_lower
test = test_function(x)
while abs(x_upper - x_lower) > tolerance*abs(upper_edge - lower_edge):
test = test_function(x)
if verbose:
print("trying x, test_func = ", x, test)
if test < stop_value:
if is_increasing:
x_lower = x
x = (x_upper + x_lower)/2
else:
x_upper = x
x = (x_upper + x_lower)/2
else:
if is_increasing:
x_upper = x
x = (x_upper + x_lower)/2
else:
x_lower = x
x = (x_upper + x_lower)/2
if x == x_lower or x == x_upper:
if verbose:
print("Ran into edge of search window, exiting")
return x
return x
def cleanLimitData(masses, lower_limits, upper_limits, apply_smoothing=False):
diff_upper_lower = upper_limits - lower_limits
upper_limits = np.delete(upper_limits, np.where(diff_upper_lower < 0))
lower_limits = np.delete(lower_limits, np.where(diff_upper_lower < 0))
masses = np.delete(masses, np.where(diff_upper_lower < 0))
# Apply a savgol filter
if apply_smoothing:
lower_limits = savgol_filter(lower_limits, 3, 0)
joined_limits = np.append(lower_limits, upper_limits[::-1])
joined_masses = np.append(masses, masses[::-1])
# Extend to the zero mass limit
joined_masses = np.append(0.0, joined_masses)
joined_limits = np.append(joined_limits[0], joined_limits)
return joined_masses, joined_limits
class ChiSquareRandomizedSearch:
"""
Perform a randomized search for the upper and lower confidence limits (CL's)
inside of a specified interval param_range. Must pass in a signal model (signal_generator),
which is a function of a single model parameter (theta), a set of observations, and an
optional set of backgrounds. signal_generator, observations, and background must all have
the same array shape.
Options:
target_cl: the target CL in decimal form
tolerance: the percentage tolerance away from the chi2 value associated with the target_cl
max_points: the stopping criterion; if we test more than max_points and haven't found
any limits, exit the search and return the peak value of the chi2 at the last point
"""
def __init__(self, signal_generator, observations, background=None, param_range=(0,1,),
target_cl=0.9, ddof=1, tolerance=0.05, max_points=100):
self.range = param_range
self.tol = tolerance
self.signal = signal_generator
self.obs = observations
self.bkg = background
self.ddof = ddof
self.cl = target_cl
self.max_points = max_points
self.target_chi2 = chi2.ppf(target_cl, observations.shape[0] - ddof) - observations.shape[0] if background is not None else 2.3
# Chi2 map
self.chisq_list = []
self.param_list = []
self.lower_cl = None
self.upper_cl = None
def test_stat(self, theta):
# Takes in model parameter theta
if self.bkg is not None:
return chisquare(self.signal(theta) + self.bkg, self.obs, self.ddof)[0]
else:
return np.sum(self.signal(theta))
def update_search_window(self):
sorted_chi2_map = self.get_sorted_chisq_dist()
chi2_vals = sorted_chi2_map[:,1]
param_vals = sorted_chi2_map[:,0]
max_chi2_id = np.argmax(chi2_vals)
max_param = param_vals[max_chi2_id]
if max_param != param_vals[0] and max_param != param_vals[-1]:
return param_vals[max_chi2_id-1], param_vals[max_chi2_id+1]
else:
return param_vals[0], param_vals[-1]
def run_search(self, verbose=False):
# Draw random variates over parameter range
# Check test statistic until we find a high point in between two lower points
# The max must be constrained there
theta_lower = self.range[0]
theta_upper = self.range[1]
theta_mid = (theta_upper + theta_lower)/2
theta_mid_upper = (theta_mid + theta_upper)/2
theta_mid_lower = (theta_mid + theta_lower)/2
candidates = [theta_lower, theta_mid_lower, theta_mid, theta_mid_upper, theta_upper]
middle_ctrl_pts = []
outer_ctrl_pts = []
if verbose:
print("Checking candidates: ", candidates)
# loop over initial candidates
# there is a small chance that we land within tolerance of a target CL here,
# but we haven't differentiated if it is the lower or upper CL, so don't bother.
for theta in candidates:
self.param_list.append(theta)
stat = self.test_stat(theta)
self.chisq_list.append(stat)
if stat > self.target_chi2:
middle_ctrl_pts.append(theta)
else:
outer_ctrl_pts.append(theta)
if verbose:
print("Finished candidates. beginning control pt. search...")
# Begin randomized search in window (lower_edge, upper_edge)
upper_edge = self.range[1]
lower_edge = self.range[0]
# We need at least 3 points: one point in the middle of the chisquare dist.
# between the two CL levels, and two points outside
trial_counter = 0
while len(middle_ctrl_pts) < 1:
trial_counter += 1
if trial_counter > self.max_points:
return (upper_edge + lower_edge)/2, (upper_edge + lower_edge)/2
if (upper_edge - lower_edge)/(self.range[1] - self.range[0]) < self.tol:
if verbose:
print("Search window too narrow before finding target CL; exiting")
return None, None #(upper_edge + lower_edge)/2, (upper_edge + lower_edge)/2
if verbose:
print("Checking in range ", lower_edge, upper_edge)
theta_rnd = np.random.uniform(lower_edge, upper_edge)
stat = self.test_stat(theta_rnd)
if verbose:
print("param = ", theta_rnd, "has test stat. = ", stat)
self.param_list.append(theta_rnd)
self.chisq_list.append(stat)
if stat > self.target_chi2:
middle_ctrl_pts.append(theta_rnd)
else:
outer_ctrl_pts.append(theta_rnd)
lower_edge, upper_edge = self.update_search_window()
# If we have a middle control point, use it to differentiate
# where the outer control points lie and update the search window
if len(middle_ctrl_pts) >= 1:
# Check if we find any chi2 within tolerance of the CL targets
if abs(stat - self.target_chi2)/self.target_chi2 < self.tol:
if theta_rnd <= middle_ctrl_pts[0]:
self.lower_cl = theta_rnd
else:
self.upper_cl = theta_rnd
if self.lower_cl is not None and self.upper_cl is not None:
if verbose:
print("Found both CLs! No binary search needed.")
break
if verbose:
print("Found control pts. Running binary search to find the upper and lower CLs.")
theta_lower = min(outer_ctrl_pts)
theta_upper = max(outer_ctrl_pts)
theta_mid_lower = min(middle_ctrl_pts)
theta_mid_upper = max(middle_ctrl_pts)
# If not yet within tolerance of either upper or lower cl,
# run binary searches using the control points as constraints
if self.lower_cl is None:
self.lower_cl = binary_search(self.test_stat, self.target_chi2, theta_lower, theta_mid_lower,
tolerance=self.tol, is_increasing=True, verbose=verbose)
self.param_list.append(self.lower_cl)
self.chisq_list.append(self.test_stat(self.lower_cl))
if self.upper_cl is None:
self.upper_cl = binary_search(self.test_stat, self.target_chi2, theta_mid_upper, theta_upper,
tolerance=self.tol, is_increasing=False, verbose=verbose)
self.param_list.append(self.upper_cl)
self.chisq_list.append(self.test_stat(self.upper_cl))
if verbose:
print("found upper CL and lower CL at chi2 = ", self.chisq_list[-1], self.chisq_list[-2])
return self.lower_cl, self.upper_cl
def get_sorted_chisq_dist(self):
chisq_param_pairs = np.array([self.param_list, self.chisq_list]).transpose()
return chisq_param_pairs[chisq_param_pairs[:,0].argsort()]
class PseudoExperiment:
"""
Class for running pseudoexperiments given a set of observations 'obs', assuming
that the errors on the observations are sqrt(obs) and are normally distributed.
"""
def __init__(self, expectations, ddof=1, data_name="pe_output.dat"):
self.exp_values = np.array(expectations)
self.ddof = ddof
self.dat_loc = data_name
self.chi2_values = []
def draw_variates(self):
# Given the array of expectation values and errors, draw normally dist. variates
n_bins = len(self.exp_values)
u = np.random.uniform(0,1,n_bins)
obs = norm.ppf(u, loc=self.exp_values, scale=np.sqrt(self.exp_values))
return np.round(obs, 2)
def run(self, n_experiments=10000):
# draw_variates n_samples times
outfile = open(self.dat_loc, "w")
for i in range(n_experiments):
obs_i = self.draw_variates()
data_str = ' '.join([str(obs) for obs in obs_i]) + "\n"
outfile.write(data_str)
outfile.close()
def get_chi2_dist(self):
# Get the chi2 distribution for the generated samples
self.chi2_values = []
readfile = np.genfromtxt(self.dat_loc)
n_dof = len(self.exp_values) - self.ddof
for i in range(readfile.shape[0]):
obs_i = readfile[i,:]
self.chi2_values.append(chisquare(obs_i, self.exp_values, n_dof)[0])
return np.array(self.chi2_values)
def get_chi2_median(self):
return np.median(self.chi2_values)
def get_chi2_pvalue(self, p):
chi2_sorted = self.get_chi2_dist()
chi2_hist = np.histogram(chi2_sorted, bins=100)
cdf = np.cumsum(chi2_hist[0])/len(chi2_sorted)
absolute_val_array = np.abs(cdf - p)
smallest_difference_index = absolute_val_array.argmin()
return chi2_hist[1][smallest_difference_index]