-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathinference_a2d.py
278 lines (247 loc) · 12.1 KB
/
inference_a2d.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
'''
Inference code for Wnet
Modified from DETR (https://github.com/facebookresearch/detr)
'''
import argparse
import datetime
import json
import random
import time
from pathlib import Path
import numpy as np
import torch
from torch.utils.data import DataLoader, DistributedSampler
import datasets
import util.misc as utils
from models import build_model
import torchvision.transforms as T
import matplotlib.pyplot as plt
import os
from PIL import Image
import torch.nn.functional as F
import json
import numpy as np
import csv
import h5py
from evaluate.jaccard import db_eval_iou
from evaluate.f_boundary import db_eval_boundary
def get_args_parser():
parser = argparse.ArgumentParser('Set transformer detector', add_help=False)
parser.add_argument('--lr', default=1e-4, type=float)
parser.add_argument('--lr_backbone', default=1e-5, type=float)
parser.add_argument('--batch_size', default=2, type=int)
parser.add_argument('--weight_decay', default=1e-4, type=float)
parser.add_argument('--epochs', default=150, type=int)
parser.add_argument('--lr_drop', default=100, type=int)
parser.add_argument('--clip_max_norm', default=0.1, type=float,
help='gradient clipping max norm')
# Model parameters
parser.add_argument('--model_path', type=str, default="output/checkpoint.pth",
help="Path to the model weights.")
# * Backbone
parser.add_argument('--backbone', default='resnet50', type=str,
help="Name of the convolutional backbone to use")
parser.add_argument('--dilation', action='store_true',
help="If true, we replace stride with dilation in the last convolutional block (DC5)")
parser.add_argument('--position_embedding', default='sine', type=str, choices=('sine', 'learned'),
help="Type of positional embedding to use on top of the image features")
# * Transformer
parser.add_argument('--enc_layers', default=4, type=int,
help="Number of encoding layers in the transformer")
parser.add_argument('--dec_layers', default=4, type=int,
help="Number of decoding layers in the transformer")
parser.add_argument('--dim_feedforward', default=2048, type=int,
help="Intermediate size of the feedforward layers in the transformer blocks")
parser.add_argument('--hidden_dim', default=384, type=int,
help="Size of the embeddings (dimension of the transformer)")
parser.add_argument('--dropout', default=0.1, type=float,
help="Dropout applied in the transformer")
parser.add_argument('--nheads', default=8, type=int,
help="Number of attention heads inside the transformer's attentions")
parser.add_argument('--num_frames', default=36, type=int,
help="Number of frames")
parser.add_argument('--num_ins', default=1, type=int,
help="Number of instances")
parser.add_argument('--num_queries', default=36, type=int,
help="Number of query slots")
parser.add_argument('--pre_norm', action='store_true')
# * Segmentation
parser.add_argument('--masks', action='store_true',
help="Train segmentation head if the flag is provided")
# Loss
parser.add_argument('--no_aux_loss', dest='aux_loss', action='store_false',
help="Disables auxiliary decoding losses (loss at each layer)")
# * Matcher
parser.add_argument('--set_cost_class', default=1, type=float,
help="Class coefficient in the matching cost")
parser.add_argument('--set_cost_bbox', default=5, type=float,
help="L1 box coefficient in the matching cost")
parser.add_argument('--set_cost_giou', default=2, type=float,
help="giou box coefficient in the matching cost")
# * Loss coefficients
parser.add_argument('--mask_loss_coef', default=1, type=float)
parser.add_argument('--dice_loss_coef', default=1, type=float)
parser.add_argument('--bbox_loss_coef', default=5, type=float)
parser.add_argument('--giou_loss_coef', default=2, type=float)
parser.add_argument('--kl_loss_coef', default=500, type=float)
# dataset parameters
parser.add_argument('--img_path', type=str)
parser.add_argument('--ann_path', type=str)
parser.add_argument('--save_path', default='result.json')
parser.add_argument('--dataset_file', default='a2d')
parser.add_argument('--coco_path', type=str)
parser.add_argument('--coco_panoptic_path', type=str)
parser.add_argument('--remove_difficult', action='store_true')
parser.add_argument('--output_dir', type=str,
help='path where to save, empty for no saving')
parser.add_argument('--device', default='cuda',
help='device to use for training / testing')
parser.add_argument('--seed', default=42, type=int)
parser.add_argument('--resume', default='', help='resume from checkpoint')
parser.add_argument('--start_epoch', default=0, type=int, metavar='N',
help='start epoch')
#parser.add_argument('--eval', action='store_true')
parser.add_argument('--eval', action='store_false')
parser.add_argument('--num_workers', default=0, type=int)
# distributed training parameters
parser.add_argument('--world_size', default=1, type=int,
help='number of distributed processes')
parser.add_argument('--dist_url', default='env://', help='url used to set up distributed training')
return parser
COLORS = [[0.000, 0.447, 0.741], [0.850, 0.325, 0.098], [0.929, 0.694, 0.125],
[0.494, 0.184, 0.556], [0.466, 0.674, 0.188], [0.301, 0.745, 0.933],
[0.494, 0.000, 0.556], [0.494, 0.000, 0.000], [0.000, 0.745, 0.000],
[0.700, 0.300, 0.600]]
transform = T.Compose([
T.Resize(300),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
# for output bounding box post-processing
def box_cxcywh_to_xyxy(x):
x_c, y_c, w, h = x.unbind(1)
b = [(x_c - 0.5 * w), (y_c - 0.5 * h),
(x_c + 0.5 * w), (y_c + 0.5 * h)]
return torch.stack(b, dim=1)
def rescale_bboxes(out_bbox, size):
img_w, img_h = size
b = box_cxcywh_to_xyxy(out_bbox)
b = b.cpu() * torch.tensor([img_w, img_h, img_w, img_h], dtype=torch.float32)
return b
def main(args):
device = torch.device(args.device)
# device = torch.device('cpu')
# fix the seed for reproducibility
seed = args.seed + utils.get_rank()
torch.manual_seed(seed)
np.random.seed(seed)
random.seed(seed)
num_frames = args.num_frames
num_ins = args.num_ins
with torch.no_grad():
model, criterion, postprocessors = build_model(args)
model.to(device)
state_dict = torch.load(args.model_path)['model']
model.load_state_dict(state_dict)
paths = {
"videoset_path": "data/a2d/Release/videoset.csv",
"annotation_path": "data/a2d/Release/Annotations",
"sample_path": "data/a2d/a2d_annotation_info.txt",
}
col_path = os.path.join(paths['annotation_path'], 'col')
test_videos = {}
with open(paths['videoset_path'], newline='') as fp:
reader = csv.reader(fp, delimiter=',')
for row in reader:
frame_idx = list(map(lambda x: int(x[:-4]) - 1, os.listdir(os.path.join(col_path, row[0]))))
frame_idx = sorted(frame_idx)
video_info = {
'label': int(row[1]),
'timestamps': [row[2], row[3]],
'size': [int(row[4]), int(row[5])], # [height, width]
'num_frames': int(row[6]),
'num_annotations': int(row[7]),
'frame_idx': frame_idx,
}
if int(row[8]) == 1:
test_videos[row[0]] = video_info
test_samples = []
test_videos_set = set()
with open(paths['sample_path'], newline='') as fp:
reader = csv.DictReader(fp)
from collections import defaultdict
video2frame = defaultdict(list)
rows = []
for row in reader:
rows.append(row)
video2frame[(row['video_id'], row['query'])].append(row['frame_idx'])
for row in rows:
if row['video_id'] in test_videos:
test_samples.append([row['video_id'], row['instance_id'], row['frame_idx'], row['query']])
test_videos_set.add(row['video_id'])
iou = 0
fb = 0
print('Total num:', len(test_samples))
for i in range(len(test_samples)):
video_id, instance_id, frame_idx, query = test_samples[i]
query = query.lower()
frame_idx = int(frame_idx)
h5_path = os.path.join('data/a2d/a2d_annotation_with_instances', video_id, '%05d.h5' % (frame_idx + 1))
if not os.path.exists(h5_path):
h5_path = os.path.join('data/a2d/a2d_annotation_with_instances', video_id, '%05d.h5' % (24 + 1))
frame_path = os.path.join('data/a2d/Release/pngs320H', video_id)
frames = list(map(lambda x: os.path.join(frame_path, x), sorted(os.listdir(frame_path))))
assert len(frames) == test_videos[video_id]['num_frames']
all_frames = []
mid_frame = (args.num_frames-1)//2
for j in range(args.num_frames):
all_frames.append(frame_idx-mid_frame+j)
for j in range(len(all_frames)):
if all_frames[j] < 0:
all_frames[j] = 0
elif all_frames[j] >= len(frames):
all_frames[j] = len(frames) - 1
all_frames = np.asarray(frames)[all_frames]
img_set = []
for j in all_frames:
im = Image.open(j)
img_set.append(transform(im).unsqueeze(0).cuda())
img=torch.cat(img_set,0)
a_filename = video_id+'_'+instance_id+'.npy'
audio = np.load(os.path.join('data/a2d_j_audio_feature', a_filename))
audio = audio.transpose()
audio = torch.as_tensor(audio, dtype=torch.float32).unsqueeze(0)
audio = audio.to(device)
outputs = model(img, audio)
masks = outputs['pred_masks'][0][mid_frame]
pred_masks =F.interpolate(masks.reshape(1,num_ins,masks.shape[-2],masks.shape[-1]),(im.size[1],im.size[0]),mode="bilinear").sigmoid().cpu().detach().numpy()>0.5
with h5py.File(h5_path, mode='r') as fp:
instance = np.asarray(fp['instance'])
all_masks = np.asarray(fp['reMask'])
if len(all_masks.shape) == 3 and instance.shape[0] != all_masks.shape[0]:
print(video_id, frame_idx + 1, instance.shape, all_masks.shape)
assert len(all_masks.shape) == 2 or len(all_masks.shape) == 3
if len(all_masks.shape) == 2:
mask = all_masks[np.newaxis]
else:
instance_id = int(instance_id)
idx = np.where(instance == instance_id)[0][0]
mask = all_masks[idx]
mask = mask[np.newaxis]
assert len(mask.shape) == 3
assert mask.shape[0] > 0
fine_gt_mask = np.transpose(np.asarray(mask), (0, 2, 1))[0]
single_iou = db_eval_iou(pred_masks[0][0], fine_gt_mask)
# single_fb, single_p, single_r = db_eval_boundary(pred_masks[0][0], fine_gt_mask)
single_fb, single_p, single_r = 0, 0, 0
iou += single_iou
fb += single_fb
if i % 50 == 0:
print(i+1, 'Jaccard:', iou / (i+1), ' F_boundary:', fb / (i+1))
print('Total num:', len(test_samples))
print('Jaccard:', iou/len(test_samples))
print('F_boundary:', fb/len(test_samples))
if __name__ == '__main__':
parser = argparse.ArgumentParser('Wnet inference script', parents=[get_args_parser()])
args = parser.parse_args()
main(args)