-
Notifications
You must be signed in to change notification settings - Fork 194
/
Copy pathlocal.py
1162 lines (946 loc) · 48.6 KB
/
local.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
from __future__ import annotations
import inspect
import json
import os
import tempfile
import time
import urllib.parse
import warnings
from abc import ABC, abstractmethod
from functools import cached_property
from pathlib import Path
from typing import TYPE_CHECKING, Any, Callable, Literal, Sequence
from urllib.parse import urlparse
import airflow
import jinja2
from airflow import DAG
from airflow.exceptions import AirflowException, AirflowSkipException
from airflow.models import BaseOperator
from airflow.models.taskinstance import TaskInstance
from airflow.utils.context import Context
from airflow.utils.session import NEW_SESSION, create_session, provide_session
from airflow.version import version as airflow_version
from attr import define
from packaging.version import Version
from cosmos import cache, settings
from cosmos._utils.importer import load_method_from_module
from cosmos.cache import (
_copy_cached_package_lockfile_to_project,
_get_latest_cached_package_lockfile,
is_cache_package_lockfile_enabled,
)
from cosmos.constants import FILE_SCHEME_AIRFLOW_DEFAULT_CONN_ID_MAP, InvocationMode
from cosmos.dataset import get_dataset_alias_name
from cosmos.dbt.project import get_partial_parse_path, has_non_empty_dependencies_file
from cosmos.exceptions import AirflowCompatibilityError, CosmosDbtRunError, CosmosValueError
from cosmos.settings import (
enable_setup_async_task,
enable_teardown_async_task,
remote_target_path,
remote_target_path_conn_id,
)
try:
from airflow.datasets import Dataset
from openlineage.common.provider.dbt.local import DbtLocalArtifactProcessor
except ModuleNotFoundError:
is_openlineage_available = False
DbtLocalArtifactProcessor = None
else:
is_openlineage_available = True
if TYPE_CHECKING:
from airflow.datasets import Dataset # noqa: F811
from dbt.cli.main import dbtRunner, dbtRunnerResult
try: # pragma: no cover
from openlineage.client.event_v2 import RunEvent # pragma: no cover
except ImportError: # pragma: no cover
from openlineage.client.run import RunEvent # pragma: no cover
from sqlalchemy.orm import Session
import cosmos.dbt.runner as dbt_runner
from cosmos.config import ProfileConfig
from cosmos.constants import (
OPENLINEAGE_PRODUCER,
)
from cosmos.dbt.parser.output import (
extract_freshness_warn_msg,
extract_log_issues,
parse_number_of_warnings_subprocess,
)
from cosmos.dbt.project import create_symlinks
from cosmos.hooks.subprocess import (
FullOutputSubprocessHook,
FullOutputSubprocessResult,
)
from cosmos.log import get_logger
from cosmos.operators.base import (
AbstractDbtBase,
DbtBuildMixin,
DbtCloneMixin,
DbtCompileMixin,
DbtLSMixin,
DbtRunMixin,
DbtRunOperationMixin,
DbtSeedMixin,
DbtSnapshotMixin,
DbtSourceMixin,
DbtTestMixin,
)
AIRFLOW_VERSION = Version(airflow.__version__)
logger = get_logger(__name__)
try:
from airflow.providers.openlineage.extractors.base import OperatorLineage
except (ImportError, ModuleNotFoundError):
try:
from openlineage.airflow.extractors.base import OperatorLineage
except (ImportError, ModuleNotFoundError):
logger.warning(
"To enable emitting Openlineage events, upgrade to Airflow 2.7 or install astronomer-cosmos[openlineage]."
)
logger.debug(
"Further details on lack of Openlineage:",
stack_info=True,
)
is_openlineage_available = False
@define
class OperatorLineage: # type: ignore
inputs: list[str] = list()
outputs: list[str] = list()
run_facets: dict[str, str] = dict()
job_facets: dict[str, str] = dict()
class AbstractDbtLocalBase(AbstractDbtBase):
"""
Executes a dbt core cli command locally.
:param profile_args: Arguments to pass to the profile. See
:py:class:`cosmos.providers.dbt.core.profiles.BaseProfileMapping`.
:param profile_config: ProfileConfig Object
:param install_deps (deprecated): If true, install dependencies before running the command
:param callback: A callback function called on after a dbt run with a path to the dbt project directory.
:param target_name: A name to use for the dbt target. If not provided, and no target is found
in your project's dbt_project.yml, "cosmos_target" is used.
:param should_store_compiled_sql: If true, store the compiled SQL in the compiled_sql rendered template.
:param append_env: If True(default), inherits the environment variables
from current process and then environment variable passed by the user will either update the existing
inherited environment variables or the new variables gets appended to it.
If False, only uses the environment variables passed in env params
and does not inherit the current process environment.
"""
template_fields: Sequence[str] = AbstractDbtBase.template_fields + ("compiled_sql", "freshness") # type: ignore[operator]
template_fields_renderers = {
"compiled_sql": "sql",
"freshness": "json",
}
def __init__(
self,
task_id: str,
profile_config: ProfileConfig,
invocation_mode: InvocationMode | None = None,
install_deps: bool = True,
callback: Callable[[str], None] | None = None,
callback_args: dict[str, Any] | None = None,
should_store_compiled_sql: bool = True,
should_upload_compiled_sql: bool = False,
append_env: bool = True,
**kwargs: Any,
) -> None:
self.task_id = task_id
self.profile_config = profile_config
self.callback = callback
self.callback_args = callback_args or {}
self.compiled_sql = ""
self.freshness = ""
self.should_store_compiled_sql = should_store_compiled_sql
self.should_upload_compiled_sql = should_upload_compiled_sql
self.openlineage_events_completes: list[RunEvent] = []
self.invocation_mode = invocation_mode
self._dbt_runner: dbtRunner | None = None
super().__init__(task_id=task_id, **kwargs)
# For local execution mode, we're consistent with the LoadMode.DBT_LS command in forwarding the environment
# variables to the subprocess by default. Although this behavior is designed for ExecuteMode.LOCAL and
# ExecuteMode.VIRTUALENV, it is not desired for the other execution modes to forward the environment variables
# as it can break existing DAGs.
self.append_env = append_env
# We should not spend time trying to install deps if the project doesn't have any dependencies
self.install_deps = install_deps and has_non_empty_dependencies_file(Path(self.project_dir))
@cached_property
def subprocess_hook(self) -> FullOutputSubprocessHook:
"""Returns hook for running the bash command."""
return FullOutputSubprocessHook()
@property
def invoke_dbt(self) -> Callable[..., FullOutputSubprocessResult | dbtRunnerResult]:
if self.invocation_mode == InvocationMode.SUBPROCESS:
return self.run_subprocess
elif self.invocation_mode == InvocationMode.DBT_RUNNER:
return self.run_dbt_runner
else:
raise ValueError(f"Invalid invocation mode: {self.invocation_mode}")
@property
def handle_exception(self) -> Callable[..., None]:
if self.invocation_mode == InvocationMode.SUBPROCESS:
return self.handle_exception_subprocess
elif self.invocation_mode == InvocationMode.DBT_RUNNER:
return self.handle_exception_dbt_runner
else:
raise ValueError(f"Invalid invocation mode: {self.invocation_mode}")
def _discover_invocation_mode(self) -> None:
"""Discovers the invocation mode based on the availability of dbtRunner for import. If dbtRunner is available, it will
be used since it is faster than subprocess. If dbtRunner is not available, it will fall back to subprocess.
This method is called at runtime to work in the environment where the operator is running.
"""
if dbt_runner.is_available():
self.invocation_mode = InvocationMode.DBT_RUNNER
self.log.info("dbtRunner is available. Using dbtRunner for invoking dbt.")
else:
self.invocation_mode = InvocationMode.SUBPROCESS
self.log.info("Could not import dbtRunner. Falling back to subprocess for invoking dbt.")
def handle_exception_subprocess(self, result: FullOutputSubprocessResult) -> None:
if self.skip_exit_code is not None and result.exit_code == self.skip_exit_code:
raise AirflowSkipException(f"dbt command returned exit code {self.skip_exit_code}. Skipping.")
elif result.exit_code != 0:
self.log.error("\n".join(result.full_output))
raise AirflowException(f"dbt command failed. The command returned a non-zero exit code {result.exit_code}.")
def handle_exception_dbt_runner(self, result: dbtRunnerResult) -> None:
"""dbtRunnerResult has an attribute `success` that is False if the command failed."""
return dbt_runner.handle_exception_if_needed(result)
@provide_session
def store_compiled_sql(self, tmp_project_dir: str, context: Context, session: Session = NEW_SESSION) -> None:
"""
Takes the compiled SQL files from the dbt run and stores them in the compiled_sql rendered template.
Gets called after every dbt run.
"""
if not self.should_store_compiled_sql:
return
compiled_queries = {}
# dbt compiles sql files and stores them in the target directory
for folder_path, _, file_paths in os.walk(os.path.join(tmp_project_dir, "target")):
for file_path in file_paths:
if not file_path.endswith(".sql"):
continue
compiled_sql_path = Path(os.path.join(folder_path, file_path))
compiled_sql = compiled_sql_path.read_text(encoding="utf-8")
relative_path = str(compiled_sql_path.relative_to(tmp_project_dir))
compiled_queries[relative_path] = compiled_sql.strip()
for name, query in compiled_queries.items():
self.compiled_sql += f"-- {name}\n{query}\n\n"
self.compiled_sql = self.compiled_sql.strip()
# need to refresh the rendered task field record in the db because Airflow only does this
# before executing the task, not after
from airflow.models.renderedtifields import RenderedTaskInstanceFields
ti = context["ti"]
if isinstance(ti, TaskInstance): # verifies ti is a TaskInstance in order to access and use the "task" field
if TYPE_CHECKING:
assert ti.task is not None
ti.task.template_fields = self.template_fields
rtif = RenderedTaskInstanceFields(ti, render_templates=False)
# delete the old records
session.query(RenderedTaskInstanceFields).filter(
RenderedTaskInstanceFields.dag_id == self.dag_id, # type: ignore[attr-defined]
RenderedTaskInstanceFields.task_id == self.task_id,
RenderedTaskInstanceFields.run_id == ti.run_id,
).delete()
session.add(rtif)
else:
self.log.info("Warning: ti is of type TaskInstancePydantic. Cannot update template_fields.")
@staticmethod
def _configure_remote_target_path() -> tuple[Path, str] | tuple[None, None]:
"""Configure the remote target path if it is provided."""
if not remote_target_path:
return None, None
_configured_target_path = None
target_path_str = str(remote_target_path)
remote_conn_id = remote_target_path_conn_id
if not remote_conn_id:
target_path_schema = urlparse(target_path_str).scheme
remote_conn_id = FILE_SCHEME_AIRFLOW_DEFAULT_CONN_ID_MAP.get(target_path_schema, None) # type: ignore[assignment]
if remote_conn_id is None:
return None, None
if not settings.AIRFLOW_IO_AVAILABLE:
raise CosmosValueError(
f"You're trying to specify remote target path {target_path_str}, but the required "
f"Object Storage feature is unavailable in Airflow version {airflow_version}. Please upgrade to "
"Airflow 2.8 or later."
)
from airflow.io.path import ObjectStoragePath
_configured_target_path = ObjectStoragePath(target_path_str, conn_id=remote_conn_id)
if not _configured_target_path.exists(): # type: ignore[no-untyped-call]
_configured_target_path.mkdir(parents=True, exist_ok=True)
return _configured_target_path, remote_conn_id
def _construct_dest_file_path(
self, dest_target_dir: Path, file_path: str, source_compiled_dir: Path, resource_type: str
) -> str:
"""
Construct the destination path for the compiled SQL files to be uploaded to the remote store.
"""
dest_target_dir_str = str(dest_target_dir).rstrip("/")
dag_task_group_identifier = self.extra_context["dbt_dag_task_group_identifier"]
rel_path = os.path.relpath(file_path, source_compiled_dir).lstrip("/")
return f"{dest_target_dir_str}/{dag_task_group_identifier}/{resource_type}/{rel_path}"
def _upload_sql_files(self, tmp_project_dir: str, resource_type: str) -> None:
start_time = time.time()
dest_target_dir, dest_conn_id = self._configure_remote_target_path()
if not dest_target_dir:
raise CosmosValueError("You're trying to upload SQL files, but the remote target path is not configured. ")
from airflow.io.path import ObjectStoragePath
source_run_dir = Path(tmp_project_dir) / f"target/{resource_type}"
files = [str(file) for file in source_run_dir.rglob("*") if file.is_file()]
for file_path in files:
dest_file_path = self._construct_dest_file_path(dest_target_dir, file_path, source_run_dir, resource_type)
dest_object_storage_path = ObjectStoragePath(dest_file_path, conn_id=dest_conn_id)
ObjectStoragePath(file_path).copy(dest_object_storage_path)
self.log.debug("Copied %s to %s", file_path, dest_object_storage_path)
elapsed_time = time.time() - start_time
self.log.info("SQL files upload completed in %.2f seconds.", elapsed_time)
def _delete_sql_files(self, tmp_project_dir: Path, resource_type: str) -> None:
dest_target_dir, dest_conn_id = self._configure_remote_target_path()
source_run_dir = Path(tmp_project_dir) / f"target/{resource_type}"
files = [str(file) for file in source_run_dir.rglob("*") if file.is_file()]
from airflow.io.path import ObjectStoragePath
for file_path in files:
dest_file_path = self._construct_dest_file_path(dest_target_dir, file_path, source_run_dir, resource_type) # type: ignore
dest_object_storage_path = ObjectStoragePath(dest_file_path, conn_id=dest_conn_id)
dest_object_storage_path.unlink()
self.log.debug("Deleted %s to %s", file_path, dest_object_storage_path)
@provide_session
def store_freshness_json(self, tmp_project_dir: str, context: Context, session: Session = NEW_SESSION) -> None:
"""
Takes the compiled sources.json file from the dbt source freshness and stores it in the freshness rendered template.
Gets called after every dbt run / source freshness.
"""
if not self.should_store_compiled_sql:
return
sources_json_path = Path(os.path.join(tmp_project_dir, "target", "sources.json"))
if sources_json_path.exists():
sources_json_content = sources_json_path.read_text(encoding="utf-8").strip()
sources_data = json.loads(sources_json_content)
formatted_sources_json = json.dumps(sources_data, indent=4)
self.freshness = formatted_sources_json
else:
self.freshness = ""
def run_subprocess(self, command: list[str], env: dict[str, str], cwd: str) -> FullOutputSubprocessResult:
self.log.info("Trying to run the command:\n %s\nFrom %s", command, cwd)
subprocess_result: FullOutputSubprocessResult = self.subprocess_hook.run_command(
command=command,
env=env,
cwd=cwd,
output_encoding=self.output_encoding,
)
self.log.info(subprocess_result.output)
return subprocess_result
def run_dbt_runner(self, command: list[str], env: dict[str, str], cwd: str) -> dbtRunnerResult:
"""Invokes the dbt command programmatically."""
if not dbt_runner.is_available():
raise CosmosDbtRunError(
"Could not import dbt core. Ensure that dbt-core >= v1.5 is installed and available in the environment where the operator is running."
)
return dbt_runner.run_command(command, env, cwd)
def _cache_package_lockfile(self, tmp_project_dir: Path) -> None:
project_dir = Path(self.project_dir)
if is_cache_package_lockfile_enabled(project_dir):
latest_package_lockfile = _get_latest_cached_package_lockfile(project_dir)
if latest_package_lockfile:
_copy_cached_package_lockfile_to_project(latest_package_lockfile, tmp_project_dir)
def _read_run_sql_from_target_dir(self, tmp_project_dir: str, sql_context: dict[str, Any]) -> str:
sql_relative_path = sql_context["dbt_node_config"]["file_path"].split(str(self.project_dir))[-1].lstrip("/")
run_sql_path = Path(tmp_project_dir) / "target/run" / Path(self.project_dir).name / sql_relative_path
with run_sql_path.open("r") as sql_file:
sql_content: str = sql_file.read()
return sql_content
def _clone_project(self, tmp_dir_path: Path) -> None:
self.log.info(
"Cloning project to writable temp directory %s from %s",
tmp_dir_path,
self.project_dir,
)
create_symlinks(Path(self.project_dir), tmp_dir_path, self.install_deps)
def _handle_partial_parse(self, tmp_dir_path: Path) -> None:
if self.cache_dir is None:
return
latest_partial_parse = cache._get_latest_partial_parse(Path(self.project_dir), self.cache_dir)
self.log.info("Partial parse is enabled and the latest partial parse file is %s", latest_partial_parse)
if latest_partial_parse is not None:
cache._copy_partial_parse_to_project(latest_partial_parse, tmp_dir_path)
def _generate_dbt_flags(self, tmp_project_dir: str, profile_path: Path) -> list[str]:
return [
"--project-dir",
str(tmp_project_dir),
"--profiles-dir",
str(profile_path.parent),
"--profile",
self.profile_config.profile_name,
"--target",
self.profile_config.target_name,
]
def _install_dependencies(
self, tmp_dir_path: Path, flags: list[str], env: dict[str, str | bytes | os.PathLike[Any]]
) -> None:
self._cache_package_lockfile(tmp_dir_path)
deps_command = [self.dbt_executable_path, "deps"] + flags
self.invoke_dbt(command=deps_command, env=env, cwd=tmp_dir_path)
@staticmethod
def _mock_dbt_adapter(async_context: dict[str, Any] | None) -> None:
if not async_context:
raise CosmosValueError("`async_context` is necessary for running the model asynchronously")
if "profile_type" not in async_context:
raise CosmosValueError("`profile_type` needs to be specified in `async_context` when running as async")
profile_type = async_context["profile_type"]
module_path = f"cosmos.operators._asynchronous.{profile_type}"
method_name = f"_mock_{profile_type}_adapter"
mock_adapter_callable = load_method_from_module(module_path, method_name)
mock_adapter_callable()
def _handle_datasets(self, context: Context) -> None:
inlets = self.get_datasets("inputs")
outlets = self.get_datasets("outputs")
self.log.info("Inlets: %s", inlets)
self.log.info("Outlets: %s", outlets)
self.register_dataset(inlets, outlets, context)
def _update_partial_parse_cache(self, tmp_dir_path: Path) -> None:
if self.cache_dir is None:
return
partial_parse_file = get_partial_parse_path(tmp_dir_path)
if partial_parse_file.exists():
cache._update_partial_parse_cache(partial_parse_file, self.cache_dir)
def _handle_post_execution(self, tmp_project_dir: str, context: Context) -> None:
self.store_freshness_json(tmp_project_dir, context)
self.store_compiled_sql(tmp_project_dir, context)
if self.should_upload_compiled_sql:
self._upload_sql_files(tmp_project_dir, "compiled")
if self.callback:
self.callback_args.update({"context": context})
self.callback(tmp_project_dir, **self.callback_args)
def _handle_async_execution(self, tmp_project_dir: str, context: Context, async_context: dict[str, Any]) -> None:
if async_context.get("teardown_task") and enable_teardown_async_task:
self._delete_sql_files(Path(tmp_project_dir), "run")
return
if enable_setup_async_task:
self._upload_sql_files(tmp_project_dir, "run")
else:
sql = self._read_run_sql_from_target_dir(tmp_project_dir, async_context)
profile_type = async_context["profile_type"]
module_path = f"cosmos.operators._asynchronous.{profile_type}"
method_name = f"_configure_{profile_type}_async_op_args"
async_op_configurator = load_method_from_module(module_path, method_name)
async_op_configurator(self, sql=sql)
async_context["async_operator"].execute(self, context)
def run_command(
self,
cmd: list[str],
env: dict[str, str | bytes | os.PathLike[Any]],
context: Context,
run_as_async: bool = False,
async_context: dict[str, Any] | None = None,
) -> FullOutputSubprocessResult | dbtRunnerResult | str:
"""
Copies the dbt project to a temporary directory and runs the command.
"""
if not self.invocation_mode:
self._discover_invocation_mode()
with tempfile.TemporaryDirectory() as tmp_project_dir:
tmp_dir_path = Path(tmp_project_dir)
env = {k: str(v) for k, v in env.items()}
self._clone_project(tmp_dir_path)
if self.partial_parse:
self._handle_partial_parse(tmp_dir_path)
with self.profile_config.ensure_profile() as profile_values:
(profile_path, env_vars) = profile_values
env.update(env_vars)
self.log.debug("Using environment variables keys: %s", env.keys())
flags = self._generate_dbt_flags(tmp_project_dir, profile_path)
if self.install_deps:
self._install_dependencies(tmp_dir_path, flags, env)
if run_as_async and not enable_setup_async_task:
self._mock_dbt_adapter(async_context)
full_cmd = cmd + flags
result = self.invoke_dbt(
command=full_cmd,
env=env,
cwd=tmp_project_dir,
)
if is_openlineage_available:
self.calculate_openlineage_events_completes(env, tmp_dir_path)
context[
"task_instance"
].openlineage_events_completes = self.openlineage_events_completes # type: ignore
if self.emit_datasets:
self._handle_datasets(context)
if self.partial_parse:
self._update_partial_parse_cache(tmp_dir_path)
self._handle_post_execution(tmp_project_dir, context)
self.handle_exception(result)
if run_as_async and async_context:
self._handle_async_execution(tmp_project_dir, context, async_context)
return result
def calculate_openlineage_events_completes(
self, env: dict[str, str | os.PathLike[Any] | bytes], project_dir: Path
) -> None:
"""
Use openlineage-integration-common to extract lineage events from the artifacts generated after running the dbt
command. Relies on the following files:
* profiles
* {project_dir}/target/manifest.json
* {project_dir}/target/run_results.json
Return a list of RunEvents
"""
# Since openlineage-integration-common relies on the profiles definition, we need to make these newly introduced
# environment variables to the library. As of 1.0.0, DbtLocalArtifactProcessor did not allow passing environment
# variables as an argument, so we need to inject them to the system environment variables.
for key, value in env.items():
os.environ[key] = str(value)
openlineage_processor = DbtLocalArtifactProcessor(
producer=OPENLINEAGE_PRODUCER,
job_namespace=settings.LINEAGE_NAMESPACE,
project_dir=project_dir,
profile_name=self.profile_config.profile_name,
target=self.profile_config.target_name,
)
# Do not raise exception if a command is unsupported, following the openlineage-dbt processor:
# https://github.com/OpenLineage/OpenLineage/blob/bdcaf828ebc117e0e5ffc5fab44ff8886eb7836b/integration/common/openlineage/common/provider/dbt/processor.py#L141
openlineage_processor.should_raise_on_unsupported_command = False
try:
events = openlineage_processor.parse()
self.openlineage_events_completes = events.completes
except (FileNotFoundError, NotImplementedError, ValueError, KeyError, jinja2.exceptions.UndefinedError):
self.log.debug("Unable to parse OpenLineage events", stack_info=True)
def get_datasets(self, source: Literal["inputs", "outputs"]) -> list[Dataset]:
"""
Use openlineage-integration-common to extract lineage events from the artifacts generated after running the dbt
command. Relies on the following files:
* profiles
* {project_dir}/target/manifest.json
* {project_dir}/target/run_results.json
Return a list of Dataset URIs (strings).
"""
uris = []
for completed in self.openlineage_events_completes:
for output in getattr(completed, source):
dataset_uri = output.namespace + "/" + urllib.parse.quote(output.name)
uris.append(dataset_uri)
self.log.debug("URIs to be converted to Dataset: %s", uris)
datasets = []
try:
datasets = [Dataset(uri) for uri in uris]
except ValueError:
raise AirflowCompatibilityError(
"""
Apache Airflow 2.9.0 & 2.9.1 introduced a breaking change in Dataset URIs, to be fixed in newer versions:
https://github.com/apache/airflow/issues/39486
If you want to use Cosmos with one of these Airflow versions, you will have to disable emission of Datasets:
By setting ``emit_datasets=False`` in ``RenderConfig``. For more information, see https://astronomer.github.io/astronomer-cosmos/configuration/render-config.html.
"""
)
return datasets
def register_dataset(self, new_inlets: list[Dataset], new_outlets: list[Dataset], context: Context) -> None:
"""
Register a list of datasets as outlets of the current task, when possible.
Until Airflow 2.7, there was not a better interface to associate outlets to a task during execution.
This works in Cosmos with versions before Airflow 2.10 with a few limitations, as described in the ticket:
https://github.com/astronomer/astronomer-cosmos/issues/522
Since Airflow 2.10, Cosmos uses DatasetAlias by default, to generate datasets. This resolved the limitations
described before.
The only limitation is that with Airflow 2.10.0 and 2.10.1, the `airflow dags test` command will not work
with DatasetAlias:
https://github.com/apache/airflow/issues/42495
"""
if AIRFLOW_VERSION < Version("2.10") or not settings.enable_dataset_alias:
logger.info("Assigning inlets/outlets without DatasetAlias")
with create_session() as session:
self.outlets.extend(new_outlets) # type: ignore[attr-defined]
self.inlets.extend(new_inlets) # type: ignore[attr-defined]
for task in self.dag.tasks: # type: ignore[attr-defined]
if task.task_id == self.task_id:
task.outlets.extend(new_outlets)
task.inlets.extend(new_inlets)
DAG.bulk_write_to_db([self.dag], session=session) # type: ignore[attr-defined]
session.commit()
else:
logger.info("Assigning inlets/outlets with DatasetAlias")
dataset_alias_name = get_dataset_alias_name(self.dag, self.task_group, self.task_id) # type: ignore[attr-defined]
for outlet in new_outlets:
context["outlet_events"][dataset_alias_name].add(outlet)
def get_openlineage_facets_on_complete(self, task_instance: TaskInstance) -> OperatorLineage:
"""
Collect the input, output, job and run facets for this operator.
It relies on the calculate_openlineage_events_completes having being called before.
This method is called by Openlineage even if `execute` fails, because `get_openlineage_facets_on_failure`
is not implemented.
"""
inputs = []
outputs = []
run_facets: dict[str, Any] = {}
job_facets: dict[str, Any] = {}
openlineage_events_completes = None
if hasattr(self, "openlineage_events_completes"):
openlineage_events_completes = self.openlineage_events_completes
elif hasattr(task_instance, "openlineage_events_completes"):
openlineage_events_completes = task_instance.openlineage_events_completes
else:
self.log.info("Unable to emit OpenLineage events due to lack of data.")
if openlineage_events_completes is not None:
for completed in openlineage_events_completes:
[inputs.append(input_) for input_ in completed.inputs if input_ not in inputs] # type: ignore
[outputs.append(output) for output in completed.outputs if output not in outputs] # type: ignore
run_facets = {**run_facets, **completed.run.facets}
job_facets = {**job_facets, **completed.job.facets}
else:
self.log.info("Unable to emit OpenLineage events due to lack of dependencies or data.")
return OperatorLineage(
inputs=inputs,
outputs=outputs,
run_facets=run_facets,
job_facets=job_facets,
)
def build_and_run_cmd(
self,
context: Context,
cmd_flags: list[str] | None = None,
run_as_async: bool = False,
async_context: dict[str, Any] | None = None,
) -> FullOutputSubprocessResult | dbtRunnerResult:
dbt_cmd, env = self.build_cmd(context=context, cmd_flags=cmd_flags)
dbt_cmd = dbt_cmd or []
result = self.run_command(
cmd=dbt_cmd, env=env, context=context, run_as_async=run_as_async, async_context=async_context
)
return result
def on_kill(self) -> None:
if self.invocation_mode == InvocationMode.SUBPROCESS:
if self.cancel_query_on_kill:
self.subprocess_hook.send_sigint()
else:
self.subprocess_hook.send_sigterm()
class DbtLocalBaseOperator(AbstractDbtLocalBase, BaseOperator):
template_fields: Sequence[str] = AbstractDbtLocalBase.template_fields # type: ignore[operator]
def __init__(self, *args: Any, **kwargs: Any) -> None:
# In PR #1474, we refactored cosmos.operators.base.AbstractDbtBase to remove its inheritance from BaseOperator
# and eliminated the super().__init__() call. This change was made to resolve conflicts in parent class
# initializations while adding support for ExecutionMode.AIRFLOW_ASYNC. Operators under this mode inherit
# Airflow provider operators that enable deferrable SQL query execution. Since super().__init__() was removed
# from AbstractDbtBase and different parent classes require distinct initialization arguments, we explicitly
# initialize them (including the BaseOperator) here by segregating the required arguments for each parent class.
abstract_dbt_local_base_kwargs = {}
base_operator_kwargs = {}
abstract_dbt_local_base_args_keys = (
inspect.getfullargspec(AbstractDbtBase.__init__).args
+ inspect.getfullargspec(AbstractDbtLocalBase.__init__).args
)
base_operator_args = set(inspect.signature(BaseOperator.__init__).parameters.keys())
for arg_key, arg_value in kwargs.items():
if arg_key in abstract_dbt_local_base_args_keys:
abstract_dbt_local_base_kwargs[arg_key] = arg_value
if arg_key in base_operator_args:
base_operator_kwargs[arg_key] = arg_value
AbstractDbtLocalBase.__init__(self, **abstract_dbt_local_base_kwargs)
if kwargs.get("emit_datasets", True) and settings.enable_dataset_alias and AIRFLOW_VERSION >= Version("2.10"):
from airflow.datasets import DatasetAlias
# ignoring the type because older versions of Airflow raise the follow error in mypy
# error: Incompatible types in assignment (expression has type "list[DatasetAlias]", target has type "str")
dag_id = kwargs.get("dag")
task_group_id = kwargs.get("task_group")
base_operator_kwargs["outlets"] = [
DatasetAlias(name=get_dataset_alias_name(dag_id, task_group_id, self.task_id))
] # type: ignore
BaseOperator.__init__(self, **base_operator_kwargs)
class DbtBuildLocalOperator(DbtBuildMixin, DbtLocalBaseOperator):
"""
Executes a dbt core build command.
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields + DbtBuildMixin.template_fields # type: ignore[operator]
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class DbtLSLocalOperator(DbtLSMixin, DbtLocalBaseOperator):
"""
Executes a dbt core ls command.
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields # type: ignore[operator]
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class DbtSeedLocalOperator(DbtSeedMixin, DbtLocalBaseOperator):
"""
Executes a dbt core seed command.
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields + DbtSeedMixin.template_fields # type: ignore[operator]
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class DbtSnapshotLocalOperator(DbtSnapshotMixin, DbtLocalBaseOperator):
"""
Executes a dbt core snapshot command.
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields # type: ignore[operator]
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class DbtSourceLocalOperator(DbtSourceMixin, DbtLocalBaseOperator):
"""
Executes a dbt source freshness command.
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields # type: ignore[operator]
def __init__(self, *args: Any, on_warning_callback: Callable[..., Any] | None = None, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
self.on_warning_callback = on_warning_callback
self.extract_issues: Callable[..., tuple[list[str], list[str]]]
def _handle_warnings(self, result: FullOutputSubprocessResult | dbtRunnerResult, context: Context) -> None:
"""
Handles warnings by extracting log issues, creating additional context, and calling the
on_warning_callback with the updated context.
:param result: The result object from the build and run command.
:param context: The original airflow context in which the build and run command was executed.
"""
if self.invocation_mode == InvocationMode.SUBPROCESS:
self.extract_issues = extract_freshness_warn_msg
elif self.invocation_mode == InvocationMode.DBT_RUNNER:
self.extract_issues = dbt_runner.extract_message_by_status
test_names, test_results = self.extract_issues(result)
warning_context = dict(context)
warning_context["test_names"] = test_names
warning_context["test_results"] = test_results
self.on_warning_callback and self.on_warning_callback(warning_context)
def execute(self, context: Context, **kwargs: Any) -> None:
result = self.build_and_run_cmd(context=context, cmd_flags=self.add_cmd_flags())
if self.on_warning_callback:
self._handle_warnings(result, context)
class DbtRunLocalOperator(DbtRunMixin, DbtLocalBaseOperator):
"""
Executes a dbt core run command.
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields + DbtRunMixin.template_fields # type: ignore[operator]
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class DbtTestLocalOperator(DbtTestMixin, DbtLocalBaseOperator):
"""
Executes a dbt core test command.
:param on_warning_callback: A callback function called on warnings with additional Context variables "test_names"
and "test_results" of type `List`. Each index in "test_names" corresponds to the same index in "test_results".
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields # type: ignore[operator]
def __init__(
self,
on_warning_callback: Callable[..., Any] | None = None,
**kwargs: Any,
) -> None:
super().__init__(**kwargs)
self.on_warning_callback = on_warning_callback
self.extract_issues: Callable[..., tuple[list[str], list[str]]]
self.parse_number_of_warnings: Callable[..., int]
def _handle_warnings(self, result: FullOutputSubprocessResult | dbtRunnerResult, context: Context) -> None:
"""
Handles warnings by extracting log issues, creating additional context, and calling the
on_warning_callback with the updated context.
:param result: The result object from the build and run command.
:param context: The original airflow context in which the build and run command was executed.
"""
test_names, test_results = self.extract_issues(result)
warning_context = dict(context)
warning_context["test_names"] = test_names
warning_context["test_results"] = test_results
self.on_warning_callback and self.on_warning_callback(warning_context)
def _set_test_result_parsing_methods(self) -> None:
"""Sets the extract_issues and parse_number_of_warnings methods based on the invocation mode."""
if self.invocation_mode == InvocationMode.SUBPROCESS:
self.extract_issues = lambda result: extract_log_issues(result.full_output)
self.parse_number_of_warnings = parse_number_of_warnings_subprocess
elif self.invocation_mode == InvocationMode.DBT_RUNNER:
self.extract_issues = dbt_runner.extract_message_by_status
self.parse_number_of_warnings = dbt_runner.parse_number_of_warnings
def execute(self, context: Context, **kwargs: Any) -> None:
result = self.build_and_run_cmd(context=context, cmd_flags=self.add_cmd_flags())
self._set_test_result_parsing_methods()
number_of_warnings = self.parse_number_of_warnings(result) # type: ignore
if self.on_warning_callback and number_of_warnings > 0:
self._handle_warnings(result, context)
class DbtRunOperationLocalOperator(DbtRunOperationMixin, DbtLocalBaseOperator):
"""
Executes a dbt core run-operation command.
:param macro_name: name of macro to execute
:param args: Supply arguments to the macro. This dictionary will be mapped to the keyword arguments defined in the
selected macro.
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields + DbtRunOperationMixin.template_fields # type: ignore[operator]
def __init__(self, *args: Any, **kwargs: Any) -> None:
super().__init__(*args, **kwargs)
class DbtDocsLocalOperator(DbtLocalBaseOperator):
"""
Executes `dbt docs generate` command.
Use the `callback` parameter to specify a callback function to run after the command completes.
"""
template_fields: Sequence[str] = DbtLocalBaseOperator.template_fields # type: ignore[operator]
ui_color = "#8194E0"
required_files = ["index.html", "manifest.json", "catalog.json"]
base_cmd = ["docs", "generate"]
def __init__(self, **kwargs: Any) -> None:
super().__init__(**kwargs)
self.check_static_flag()
def check_static_flag(self) -> None:
if self.dbt_cmd_flags:
if "--static" in self.dbt_cmd_flags:
# For the --static flag we only upload the generated static_index.html file
self.required_files = ["static_index.html"]
if self.dbt_cmd_global_flags:
if "--no-write-json" in self.dbt_cmd_global_flags and "graph.gpickle" in self.required_files:
self.required_files.remove("graph.gpickle")
class DbtDocsCloudLocalOperator(DbtDocsLocalOperator, ABC):
"""
Abstract class for operators that upload the generated documentation to cloud storage.
"""
template_fields: Sequence[str] = DbtDocsLocalOperator.template_fields # type: ignore[operator]
def __init__(
self,
connection_id: str,
bucket_name: str,
folder_dir: str | None = None,
**kwargs: Any,
) -> None:
"""Initializes the operator."""
self.connection_id = connection_id
self.bucket_name = bucket_name
self.folder_dir = folder_dir
super().__init__(**kwargs)
# override the callback with our own
self.callback = self.upload_to_cloud_storage
@abstractmethod
def upload_to_cloud_storage(self, project_dir: str, **kwargs: Any) -> None:
"""Abstract method to upload the generated documentation to cloud storage."""
class DbtDocsS3LocalOperator(DbtDocsCloudLocalOperator):
"""
Executes `dbt docs generate` command and upload to S3 storage.
:param connection_id: S3's Airflow connection ID
:param bucket_name: S3's bucket name
:param folder_dir: This can be used to specify under which directory the generated DBT documentation should be
uploaded.
"""
ui_color = "#FF9900"
def __init__(
self,
*args: Any,
aws_conn_id: str | None = None,
**kwargs: Any,
) -> None:
if aws_conn_id:
warnings.warn(
"Please, use `connection_id` instead of `aws_conn_id`. The argument `aws_conn_id` will be"
" deprecated in Cosmos 2.0",
DeprecationWarning,
)
kwargs["connection_id"] = aws_conn_id
super().__init__(*args, **kwargs)