-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtagging.py
447 lines (354 loc) · 16.7 KB
/
tagging.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
##python3 -m pip install --upgrade azure-cognitiveservices-vision-computervision
#python3 -m pip install --upgrade pillow
from azure.cognitiveservices.vision.computervision import ComputerVisionClient
from azure.cognitiveservices.vision.computervision.models import OperationStatusCodes
from azure.cognitiveservices.vision.computervision.models import VisualFeatureTypes, Details
from msrest.authentication import CognitiveServicesCredentials
import os
import sys
import time
import requests
import json
#setup
config={'tags_container': 'load', 'do_actual': False, 'do_predict': False,
'metrics': True, 'metrics_max_tags_num': 20, 'matching_enabled': True, 'actual_min_threshold': 50, 'predict_min_threshold': 40}
#files
pics_name_format = 'pic_' + '#num#' + '.jpg'
pics_num = 83
json_write_file = 'tags.json'
#actual
subscription_key = "add_your_api_key"
endpoint = "https://add_image_name.cognitiveservices.azure.com/"
computervision_client = ComputerVisionClient(endpoint, CognitiveServicesCredentials(subscription_key))
#prediction
#note: set MODEL_MIN_CONFIDENCE_THRESHOLD env in the deployment to "0.01" to capture all positive and negative taggings of the model because default is set to "0.5"
path = '/home/ubuntu/pics-83num-resized-half-6mb-max130kb/'
urls={'cpu': 'http://10.43.44.182:8080/', 'tpu': 'http://10.43.24.20:8080/', 'gpu': 'http://10.43.200.7:8080/'}
#matches for normaliztion
matches = [['star','sky'], ['plant', 'potted plant', 'vase'], ['chair', 'couch', 'armrest'], ['furniture', 'dining table', 'table', 'appliance'], ['surfboard', 'surfing equipment',], ['chair', 'furniture'],
['cup', 'coffee', 'mug', 'coffee cup'],['food', 'bowl'], ['tv', 'office equipment', 'display device'], ['knife', 'tableware', 'spoon'], ['plane', 'airplane'], ['light', 'traffic light'], ['fedora', 'hat'],
['pot', 'flowerpot', 'vase'], ['pier', 'beach'], ['pattern', 'kite'], ['car', 'land vehicle'],['fire hydrant', 'tap'], ['mobile device', 'cell phone'], ['dog', 'animal', 'mouse', 'teddy bear'], ['dessert', 'donut'],
['backpack', 'clothing'],['motorcycle', 'vehicle'], ['yellow', 'banana']]
#container for all data
tags = {}
def initiate_tags():
tags = {}
for i in range(1,pics_num + 1):
tag ={}
tag['actual'] = []
tag['cpu'] = {'predicted':[], 'tp': 0, 'tn': 0, 'fp':0, 'fn':0}
tag['tpu'] = {'predicted':[], 'tp': 0, 'tn': 0, 'fp':0, 'fn':0}
tag['gpu'] = {'predicted':[], 'tp': 0, 'tn': 0, 'fp':0, 'fn':0}
pic_name = pics_name_format.replace('#num#', str(i))
tags[pic_name] = tag
return tags
#Initiate tags, or, load it from json file
if config['tags_container'] == 'initiate':
tags = create_tags()
#load tags.json
else:
# read JSON file
with open(json_write_file, 'r') as openfile:
# Reading from json file
tags = json.load(openfile)
# #temporary fix
# for i in range(1,pics_num + 1):
# pic_name = pics_name_format.replace('#num#', str(i))
# #fix detected_objects to predicted
# tags[pic_name]['cpu']['predicted'] = tags[pic_name]['cpu']['detected_objects']
# del(tags[pic_name]['cpu']['detected_objects'])
# tags[pic_name]['tpu']['predicted'] = tags[pic_name]['tpu']['detected_objects']
# del(tags[pic_name]['tpu']['detected_objects'])
# tags[pic_name]['gpu']['predicted'] = tags[pic_name]['gpu']['detected_objects']
# del(tags[pic_name]['gpu']['detected_objects'])
# #fix object to tag
# for item in tags[pic_name]['cpu']['predicted']:
# item['tag'] = item['object']
# conf=float(item['confidence'])
# del(item['confidence'])
# item['confidence'] = conf
# del(item['object'])
# for item in tags[pic_name]['tpu']['predicted']:
# item['tag'] = item['object']
# conf=float(item['confidence'])
# del(item['confidence'])
# item['confidence'] = conf
# del(item['object'])
# for item in tags[pic_name]['gpu']['predicted']:
# item['tag'] = item['object']
# conf=float(item['confidence'])
# del(item['confidence'])
# item['confidence'] = conf
# del(item['object'])
#do actual ground truth if required
if config['do_actual'] == True:
accumulative_response_time = 0
for i in range(1,pics_num + 1):
#azure free tier allows only 20 calls per minutes, so this sleep times mitigates charged calls
time.sleep(4)
#timing
start = time.time()
#get pic
pic_name = pics_name_format.replace('#num#', str(i))
local_image = open(path + pic_name, 'rb')
# Select visual feature type(s)
local_image_features = ["categories"]
local_image_features = [VisualFeatureTypes.categories,VisualFeatureTypes.brands,VisualFeatureTypes.adult,VisualFeatureTypes.color,VisualFeatureTypes.description,VisualFeatureTypes.faces,VisualFeatureTypes.image_type,VisualFeatureTypes.objects,VisualFeatureTypes.tags]
# Call API
categorize_results_local = computervision_client.analyze_image_in_stream(local_image, local_image_features)
#elapsed
accumulative_response_time += time.time() - start
# Return tags
# Print results with confidence score
print("Tags in the remote image: ")
if (len(categorize_results_local.tags) == 0):
print("No tags detected.")
else:
for tag in categorize_results_local.tags:
print("'{}' with confidence {:.2f}%".format(tag.name, tag.confidence * 100))
#get tags
for j in range(len(categorize_results_local.tags)):
tag = {'tag': categorize_results_local.tags[j].name, 'confidence': categorize_results_local.tags[j].confidence * 100}
tags[pic_name]['actual'].append(tag)
print('######################### Avg Response Time of Cloud ( accumulative response time /pics_num')
print(str(accumulative_response_time/float(pics_num)))
#do prediction if required
if config['do_predict'] == True:
#inference for tagging pics per url
for i in range(1,pics_num + 1):
#get pic
pic_name = pics_name_format.replace('#num#', str(i))
#cpu
if 'cpu' in urls and urls['cpu']:
files = {'image_file': open(path + pic_name, 'rb'),}
response = requests.get(urls['cpu'], files=files)
print('######### ' + pic_name + ': cpu\n' + str(response.text))
detected_objects = json.loads(response.text)
#push to tags
tags[pic_name]['cpu']['detected_objects'] = detected_objects['detected_objects']
#tpu
if 'tpu' in urls and urls['tpu']:
files = {'image_file': open(path + pic_name, 'rb'),}
response = requests.get(urls['tpu'], files=files)
print('######### ' + pic_name + ': tpu\n' + str(response.text))
detected_objects = json.loads(response.text)
#push to tags
tags[pic_name]['tpu']['detected_objects'] = detected_objects['detected_objects']
#gpu
if 'gpu' in urls and urls['gpu']:
files = {'image_file': open(path + pic_name, 'rb'),}
response = requests.get(urls['gpu'], files=files)
print('######### ' + pic_name + ': gpu\n' + str(response.text))
detected_objects = json.loads(response.text)
#push to tags
tags[pic_name]['gpu']['detected_objects'] = detected_objects['detected_objects']
#measure metricsif required
if config['metrics'] == True:
precision = {'cpu': 0.0, 'tpu': 0.0, 'gpu': 0.0}
recall = {'cpu': 0.0, 'tpu': 0.0, 'gpu': 0.0}
f_measure = {'cpu': 0.0, 'tpu': 0.0, 'gpu': 0.0}
sum_tp = {'cpu': 0, 'tpu': 0, 'gpu': 0}
sum_fp = {'cpu': 0, 'tpu': 0, 'gpu': 0}
sum_fn = {'cpu': 0, 'tpu': 0, 'gpu': 0}
#all pics
for i in range(1,pics_num + 1):
#get pic_name
pic_name = pics_name_format.replace('#num#', str(i))
#get pic item
pic = tags[pic_name]
#metrics_max_tags_num
max_tags_num = config['metrics_max_tags_num']
#list of dicts( tag and confidence values)
actual = pic['actual']
#list of tags values with confidence > actual_min_threshold
actual_tags = [v for item in actual for k,v in item.items() if k == 'tag' and item['confidence'] > config['actual_min_threshold']]
#list of dicts( tag and confidence values)
predictions = {'cpu':[], 'tpu':[], 'gpu':[]}
#list of tags values
predictions_tags = {'cpu':[], 'tpu':[], 'gpu':[]}
#list of dicts( tag and confidence values)
predictions['cpu'] = pic['cpu']['predicted']
#list of tags values
# predictions_tags['cpu'] = [v for item in predictions['cpu'] for k,v in item.items() if k == 'tag' and predictions['cpu'].index(item) < max_tags_num]
for item in predictions['cpu']:
if item['confidence'] < config['predict_min_threshold']:
continue
#get tag
predictions_tags['cpu'].append(item['tag'])
#keep only unique values
predictions_tags['cpu'] = list(set(predictions_tags['cpu']))
#if max reached, stop
if len(predictions_tags['cpu']) == max_tags_num:
break
#list of dicts( tag and confidence values)
predictions['tpu'] = pic['tpu']['predicted']
#list of tags values
# predictions_tags['tpu'] = [v for item in predictions['tpu'] for k,v in item.items() if k == 'tag' and predictions['tpu'].index(item) < max_tags_num]
for item in predictions['tpu']:
if item['confidence'] < config['predict_min_threshold']:
continue
#get tag
predictions_tags['tpu'].append(item['tag'])
#keep only unique values
predictions_tags['tpu'] = list(set(predictions_tags['tpu']))
#if max reached, stop
if len(predictions_tags['tpu']) == max_tags_num:
break
#list of dicts( tag and confidence values)
predictions['gpu'] = pic['gpu']['predicted']
#list of tags values
# predictions_tags['gpu'] = [v for item in predictions['gpu'] for k,v in item.items() if k == 'tag' and predictions['gpu'].index(item) < max_tags_num]
for item in predictions['gpu']:
if item['confidence'] < config['predict_min_threshold']:
continue
#get tag
predictions_tags['gpu'].append(item['tag'])
#keep only unique values
predictions_tags['gpu'] = list(set(predictions_tags['gpu']))
#if max reached, stop
if len(predictions_tags['gpu']) == max_tags_num:
break
# if i == 1:
# print(predictions['tpu'])
# print(pic_name)
# print('actual_tags= ' + str(actual_tags))
# print('pred_tags_cpu= ' + str( predictions_tags['cpu']))
# print('pred_tags_tpu= ' + str( predictions_tags['tpu']))
# print('pred_tags_gpu= ' + str( predictions_tags['gpu']))
#precision = true positives / (true positives + false positives)
#cpu
#true positives and false positives
tp = 0; fp = 0; fn = 0; tn = 0
for tag in predictions_tags['cpu']:
is_found =False
#if the predicted tag is found in any part of an actual tags, it is okay
if any(tag in actual_tag for actual_tag in actual_tags):
tp +=1
is_found = True
#or if matching is enabled and any of tags matching with the predicted tag is found in any part of the an actual tags, it is okay
elif config['matching_enabled'] == True:
matched_tags = [item for item in matches if tag in item]
if not matched_tags:
matched_tags =[]
else:
matched_tags = matched_tags[0]
for matched_tag in matched_tags:
if any(matched_tag in actual_tag for actual_tag in actual_tags):
tp +=1
is_found=True
break
#tag not found in actual
if not is_found:
fp +=1
#fn
fn = len(actual_tags) - tp
#set tp
tags[pic_name]['cpu']['tp'] = tp
#set fp
tags[pic_name]['cpu']['fp'] = fp
#set fn
tags[pic_name]['cpu']['fn'] = fn
#add sum
sum_tp['cpu'] += tp
sum_fp['cpu'] += fp
sum_fn['cpu'] += fn
#tpu
#true positives and false positives
tp = 0; fp = 0
for tag in predictions_tags['tpu']:
is_found = False
#if the predicted tag is found in any part of an actual tags, it is okay
if any(tag in actual_tag for actual_tag in actual_tags):
tp +=1
is_found = True
#or if matching is enabled and any of tags matching with the predicted tag is found in any part of the an actual tags, it is okay
elif config['matching_enabled'] == True:
matched_tags = [item for item in matches if tag in item]
if not matched_tags:
matched_tags =[]
else:
matched_tags = matched_tags[0]
for matched_tag in matched_tags:
if any(matched_tag in actual_tag for actual_tag in actual_tags):
tp +=1
is_found = True
break
#tag not found in actual
if not is_found:
fp +=1
#fn
fn = len(actual_tags) - tp
#set tp
tags[pic_name]['tpu']['tp'] = tp
#set fp
tags[pic_name]['tpu']['fp'] = fp
#set fn
tags[pic_name]['tpu']['fp'] = fn
#add sum
sum_tp['tpu'] += tp
sum_fp['tpu'] += fp
sum_fn['tpu'] += fn
#gpu
#true positives and false positives
tp = 0; fp = 0
for tag in predictions_tags['gpu']:
is_found = False
#if the predicted tag is found in any part of an actual tags, it is okay
if any(tag in actual_tag for actual_tag in actual_tags):
tp +=1
is_found = True
#or if matching is enabled and any of tags matching with the predicted tag is found in any part of the an actual tags, it is okay
elif config['matching_enabled'] == True:
matched_tags = [item for item in matches if tag in item]
if not matched_tags:
matched_tags =[]
else:
matched_tags = matched_tags[0]
for matched_tag in matched_tags:
if any(matched_tag in actual_tag for actual_tag in actual_tags):
tp +=1
is_found= True
break
if not is_found:
fp +=1
#fn
fn = len(actual_tags) - tp
#set tp
tags[pic_name]['gpu']['tp'] = tp
#set fp
tags[pic_name]['gpu']['fp'] = fp
#set fp
tags[pic_name]['gpu']['fn'] = fn
#add sum
sum_tp['gpu'] += tp
sum_fp['gpu'] += fp
sum_fn['gpu'] += fn
print('max ' + str(max_tags_num))
#avg metrics
print('sum_tp_cpu=' + str(sum_tp['cpu']))
print('sum_fp_cpu=' + str(sum_fp['cpu']))
print('sum_fn_cpu=' + str(sum_fn['cpu']))
print('sum_tp_tpu=' + str(sum_tp['tpu']))
print('sum_fp_tpu=' + str(sum_fp['tpu']))
print('sum_fn_tpu=' + str(sum_fn['tpu']))
print('sum_tp_gpu=' + str(sum_tp['gpu']))
print('sum_fp_gpu=' + str(sum_fp['gpu']))
print('sum_fn_gpu=' + str(sum_fn['gpu']))
#precision
precision['cpu'] = sum_tp['cpu'] / (sum_tp['cpu'] + sum_fp['cpu'])
precision['tpu'] = sum_tp['tpu'] / (sum_tp['tpu'] + sum_fp['tpu'])
precision['gpu'] = sum_tp['gpu'] / (sum_tp['gpu'] + sum_fp['gpu'])
print('precision=' + str(precision))
#recall
recall['cpu'] = sum_tp['cpu'] / (sum_tp['cpu'] + sum_fn['cpu'])
recall['tpu'] = sum_tp['tpu'] / (sum_tp['tpu'] + sum_fn['tpu'])
recall['gpu'] = sum_tp['gpu'] / (sum_tp['gpu'] + sum_fn['gpu'])
print('recall= ' + str(recall))
#f-measure, f1-score or f-score
f_measure['cpu'] = (2 * precision['cpu'] * recall['cpu']) / (precision['cpu'] + recall['cpu'])
f_measure['tpu'] = (2 * precision['tpu'] * recall['tpu']) / (precision['tpu'] + recall['tpu'])
f_measure['gpu'] = (2 * precision['gpu'] * recall['gpu']) / (precision['gpu'] + recall['gpu'])
print('F-measure= ' + str(f_measure))
#write to json file
with open(json_write_file, "w") as outfile:
json.dump(tags, outfile)