-
Notifications
You must be signed in to change notification settings - Fork 1
/
chords_progressions_transformer_melody.py
460 lines (309 loc) · 12.2 KB
/
chords_progressions_transformer_melody.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
# -*- coding: utf-8 -*-
"""Chords_Progressions_Transformer_Melody.ipynb
Automatically generated by Colaboratory.
Original file is located at
https://colab.research.google.com/drive/13YJSFR0K6Wxa_mX5HCKADwEDns6X7HIS
# Chords Progressions Transformer Melody (ver. 1.0)
***
Powered by tegridy-tools: https://github.com/asigalov61/tegridy-tools
***
WARNING: This complete implementation is a functioning model of the Artificial Intelligence. Please excercise great humility, care, and respect. https://www.nscai.gov/
***
#### Project Los Angeles
#### Tegridy Code 2024
***
# (GPU CHECK)
"""
#@title NVIDIA GPU check
!nvidia-smi
"""# (SETUP ENVIRONMENT)"""
#@title Install dependencies
!git clone --depth 1 https://github.com/asigalov61/Chords-Progressions-Transformer
!pip install huggingface_hub
!pip install einops
!pip install torch-summary
!apt install fluidsynth #Pip does not work for some reason. Only apt works
# Commented out IPython magic to ensure Python compatibility.
#@title Import modules
print('=' * 70)
print('Loading core Chords Progressions Transformer modules...')
import os
import copy
import pickle
import secrets
import statistics
from time import time
import tqdm
print('=' * 70)
print('Loading main Chords Progressions Transformer modules...')
import torch
# %cd /content/Chords-Progressions-Transformer
import TMIDIX
from midi_to_colab_audio import midi_to_colab_audio
from x_transformer_1_23_2 import *
import random
# %cd /content/
print('=' * 70)
print('Loading aux Chords Progressions Transformer modules...')
import matplotlib.pyplot as plt
from torchsummary import summary
from sklearn import metrics
from IPython.display import Audio, display
from huggingface_hub import hf_hub_download
from google.colab import files
print('=' * 70)
print('Done!')
print('Enjoy! :)')
print('=' * 70)
"""# (LOAD MODEL)"""
#@title Load Chords Progressions Transformer Pre-Trained Model
#@markdown Model precision option
model_precision = "bfloat16" # @param ["bfloat16", "float16"]
#@markdown bfloat16 == Half precision/faster speed (if supported, otherwise the model will default to float16)
#@markdown float16 == Full precision/fast speed
plot_tokens_embeddings = False # @param {type:"boolean"}
print('=' * 70)
print('Loading Chords Progressions Transformer Melody Pre-Trained Model...')
print('Please wait...')
print('=' * 70)
full_path_to_models_dir = "/content/Chords-Progressions-Transformer/Models"
dim = 1024
depth = 4
heads = 8
model_checkpoint_file_name = 'Chords_Progressions_Transformer_Melody_Trained_Model_31061_steps_0.3114_loss_0.9002_acc.pth'
model_path = full_path_to_models_dir+'/Melody/'+model_checkpoint_file_name
if os.path.isfile(model_path):
print('Model already exists...')
else:
hf_hub_download(repo_id='asigalov61/Chords-Progressions-Transformer',
filename=model_checkpoint_file_name,
local_dir='/content/Chords-Progressions-Transformer/Models/Melody',
local_dir_use_symlinks=False)
print('=' * 70)
print('Instantiating model...')
device_type = 'cuda'
if model_precision == 'bfloat16' and torch.cuda.is_bf16_supported():
dtype = 'bfloat16'
else:
dtype = 'float16'
if model_precision == 'float16':
dtype = 'float16'
ptdtype = {'bfloat16': torch.bfloat16, 'float16': torch.float16}[dtype]
ctx = torch.amp.autocast(device_type=device_type, dtype=ptdtype)
SEQ_LEN = 4096 # Models seq len
PAD_IDX = 449 # Models pad index
# instantiate the model
model = TransformerWrapper(
num_tokens = PAD_IDX+1,
max_seq_len = SEQ_LEN,
attn_layers = Decoder(dim = dim, depth = depth, heads = heads, attn_flash = True)
)
model = AutoregressiveWrapper(model, ignore_index = PAD_IDX, pad_value=PAD_IDX)
model.cuda()
print('=' * 70)
print('Loading model checkpoint...')
model.load_state_dict(torch.load(model_path))
print('=' * 70)
model.eval()
print('Done!')
print('=' * 70)
print('Model will use', dtype, 'precision...')
print('=' * 70)
# Model stats
print('Model summary...')
summary(model)
# Plot Token Embeddings
if plot_tokens_embeddings:
tok_emb = model.net.token_emb.emb.weight.detach().cpu().tolist()
cos_sim = metrics.pairwise_distances(
tok_emb, metric='cosine'
)
plt.figure(figsize=(7, 7))
plt.imshow(cos_sim, cmap="inferno", interpolation="nearest")
im_ratio = cos_sim.shape[0] / cos_sim.shape[1]
plt.colorbar(fraction=0.046 * im_ratio, pad=0.04)
plt.xlabel("Position")
plt.ylabel("Position")
plt.tight_layout()
plt.plot()
plt.savefig("/content/Chords-Progressions-Transformer-Tokens-Embeddings-Plot.png", bbox_inches="tight")
"""# (GENERATE)"""
#@title Load Seed MIDI
#@markdown Press play button to to upload your own seed MIDI or to load one of the provided sample seed MIDIs from the dropdown list below
select_seed_MIDI = "Upload your own custom MIDI" # @param ["Upload your own custom MIDI", "Chords-Progressions-Transformer-Piano-Seed-1", "Chords-Progressions-Transformer-Piano-Seed-2", "Chords-Progressions-Transformer-Piano-Seed-3", "Chords-Progressions-Transformer-Piano-Seed-4", "Chords-Progressions-Transformer-Piano-Seed-5", "Chords-Progressions-Transformer-Piano-Seed-6", "Chords-Progressions-Transformer-MI-Seed-1", "Chords-Progressions-Transformer-MI-Seed-2", "Chords-Progressions-Transformer-MI-Seed-3", "Chords-Progressions-Transformer-MI-Seed-4", "Chords-Progressions-Transformer-MI-Seed-5", "Chords-Progressions-Transformer-MI-Seed-6"]
render_MIDI_to_audio = False # @param {type:"boolean"}
print('=' * 70)
print('Chords Progressions Transformer Seed MIDI Loader')
print('=' * 70)
f = ''
if select_seed_MIDI != "Upload your own custom MIDI":
print('Loading seed MIDI...')
f = '/content/Chords-Progressions-Transformer/Seeds/'+select_seed_MIDI+'.mid'
else:
print('Upload your own custom MIDI...')
print('=' * 70)
uploaded_MIDI = files.upload()
if list(uploaded_MIDI.keys()):
f = list(uploaded_MIDI.keys())[0]
if f != '':
print('=' * 70)
print('File:', f)
print('=' * 70)
#=======================================================
# START PROCESSING
raw_score = TMIDIX.midi2single_track_ms_score(open(f, 'rb').read())
raw_escore = TMIDIX.advanced_score_processor(raw_score, return_enhanced_score_notes=True)[0]
raw_escore = [e for e in raw_escore if e[3] != 9]
escore = TMIDIX.augment_enhanced_score_notes(raw_escore)
cscore = TMIDIX.chordify_score([1000, escore])
chords_tokens = []
cho_toks = []
for c in cscore:
tones_chord = sorted(set([t[4] % 12 for t in c]))
try:
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(tones_chord)
except:
chord_token = TMIDIX.ALL_CHORDS_SORTED.index(TMIDIX.check_and_fix_tones_chord(tones_chord))
cho_toks.append(chord_token+128)
if cho_toks:
if len(cho_toks) > 1:
chords_tokens.append(cho_toks)
cho_toks = [cho_toks[-1]]
cho_toks = cho_toks + cho_toks
chords_tokens.append(cho_toks)
#=======================================================
song = raw_escore
song_f = []
time = 0
dur = 0
vel = 90
pitch = 0
channel = 0
patches = [0] * 16
channel = 0
for ss in song:
time = ss[1]
dur = ss[2]
pitch = ss[4]
vel = ss[5]
song_f.append(['note', time, dur, channel, pitch, vel, 0])
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Chords Progressions Transformer',
output_file_name = '/content/Chords-Progressions-Transformer-Seed-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
#=======================================================
print('=' * 70)
print('Composition stats:')
print('Composition has', len(cscore), 'chords')
print('Composition has', len(chords_tokens), 'chords tokens')
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Chords-Progressions-Transformer-Seed-Composition'
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
else:
print('=' * 70)
# @title Generate chords progressions melody from custom MIDI chords
#@markdown NOTE: You can stop the generation at any time to render partial results
#@markdown Generation settings
melody_MIDI_patch_number = 40 # @param {type:"slider", min:0, max:127, step:1}
chords_MIDI_patch_number = 0 # @param {type:"slider", min:0, max:127, step:1}
chords_duration = 32 # @param {type:"slider", min:4, max:128, step:4}
number_of_chords_to_generate_melody_for = 128 # @param {type:"slider", min:8, max:4096, step:1}
max_number_of_melody_notes_per_chord = 4 # @param {type:"slider", min:1, max:10, step:1}
number_of_memory_tokens = 4096 # @param {type:"slider", min:32, max:8188, step:4}
temperature = 0.9 # @param {type:"slider", min:0.1, max:1, step:0.05}
#@markdown Other settings
render_MIDI_to_audio = True # @param {type:"boolean"}
#===============================================================================
print('=' * 70)
print('Chords Progressions Transformer Melody Model Generator')
print('=' * 70)
torch.cuda.empty_cache()
output = []
for i in tqdm.tqdm(range(len(chords_tokens[:number_of_chords_to_generate_melody_for]))):
try:
output.extend(chords_tokens[i])
o = 0
count = 0
while o < 128 and count < max_number_of_melody_notes_per_chord:
x = torch.LongTensor([[output]]).cuda()
with ctx:
out = model.generate(x[-number_of_memory_tokens:],
1,
temperature=temperature,
return_prime=False,
verbose=False)
o = out.tolist()[0][0]
if o < 128:
output.append(o)
count += 1
except KeyboardInterrupt:
print('=' * 70)
print('Stopping generation...')
break
except Exception as e:
print('=' * 70)
print('Error:', e)
break
torch.cuda.empty_cache()
#===============================================================================
print('=' * 70)
out1 = output
print('Sample INTs', out1[:12])
print('=' * 70)
patches = [0] * 16
patches[3] = melody_MIDI_patch_number
patches[0] = chords_MIDI_patch_number
if len(output) != 0:
song = output
song_f = []
time = 0
dur = 10
vel = 90
pitch = 0
channel = 0
song1 = []
ptc = []
cho = []
for s in song:
if s < 128:
ptc.append(s)
else:
if ptc:
grp = [cho, ptc]
song1.append(grp)
cho = []
ptc = []
cho.append(s)
for ss in song1:
tones_chord = TMIDIX.ALL_CHORDS_SORTED[(ss[0][0]-128)]
dur = chords_duration
for t in tones_chord:
song_f.append(['note', time * 16, dur * 16, 0, 60+t, vel, chords_MIDI_patch_number])
song_f.append(['note', time * 16, dur * 16, 0, 48+t, vel, chords_MIDI_patch_number])
ptc_count = len(ss[1])
ptc_time_dur = dur // ptc_count
for p in ss[1]:
song_f.append(['note', time * 16, ptc_time_dur * 16, 3, p, vel, melody_MIDI_patch_number])
time += ptc_time_dur
detailed_stats = TMIDIX.Tegridy_ms_SONG_to_MIDI_Converter(song_f,
output_signature = 'Chords Progressions Transformer',
output_file_name = '/content/Chords-Progressions-Transformer-Composition',
track_name='Project Los Angeles',
list_of_MIDI_patches=patches
)
print('=' * 70)
print('Displaying resulting composition...')
print('=' * 70)
fname = '/content/Chords-Progressions-Transformer-Composition'
if render_MIDI_to_audio:
midi_audio = midi_to_colab_audio(fname + '.mid')
display(Audio(midi_audio, rate=16000, normalize=False))
TMIDIX.plot_ms_SONG(song_f, plot_title=fname)
"""# Congrats! You did it! :)"""