forked from ratschlab/RGAN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
utils.py
105 lines (102 loc) · 5.74 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
#!/usr/bin/env ipython
# Utility functions that don't fit in other scripts
import argparse
import json
def rgan_options_parser():
"""
Define parser to parse options from command line, with defaults.
Refer to this function for definitions of various variables.
"""
parser = argparse.ArgumentParser(description='Train a GAN to generate sequential, real-valued data.')
# meta-option
parser.add_argument('--settings_file', help='json file of settings, overrides everything else', type=str, default='')
# options pertaining to data
parser.add_argument('--data', help='what kind of data to train with?',
default='gp_rbf',
choices=['gp_rbf', 'sine', 'mnist', 'load',
'resampled_eICU', 'eICU_task'])
parser.add_argument('--num_samples', type=int, help='how many training examples \
to generate?', default=28*5*100)
parser.add_argument('--seq_length', type=int, default=30)
parser.add_argument('--num_signals', type=int, default=1)
parser.add_argument('--normalise', type=bool, default=False, help='normalise the \
training/vali/test data (during split)?')
parser.add_argument('--cond_dim', type=int, default=0, help='dimension of \
*conditional* input')
parser.add_argument('--max_val', type=int, default=1, help='assume conditional \
codes come from [0, max_val)')
parser.add_argument('--one_hot', type=bool, default=False, help='convert categorical \
conditional information to one-hot encoding')
parser.add_argument('--predict_labels', type=bool, default=False, help='instead \
of conditioning with labels, require model to output them')
### for gp_rbf
parser.add_argument('--scale', type=float, default=0.1)
### for sin (should be using subparsers for this...)
parser.add_argument('--freq_low', type=float, default=1.0)
parser.add_argument('--freq_high', type=float, default=5.0)
parser.add_argument('--amplitude_low', type=float, default=0.1)
parser.add_argument('--amplitude_high', type=float, default=0.9)
### for mnist
parser.add_argument('--multivariate_mnist', type=bool, default=False)
parser.add_argument('--full_mnist', type=bool, default=False)
### for loading
parser.add_argument('--data_load_from', type=str, default='')
### for eICU
parser.add_argument('--resample_rate_in_min', type=int, default=15)
# hyperparameters of the model
parser.add_argument('--hidden_units_g', type=int, default=100)
parser.add_argument('--hidden_units_d', type=int, default=100)
parser.add_argument('--kappa', type=float, help='weight between final output \
and intermediate steps in discriminator cost (1 = all \
intermediate', default=1)
parser.add_argument('--latent_dim', type=int, default=5, help='dimensionality \
of the latent/noise space')
parser.add_argument('--batch_mean', type=bool, default=False, help='append the mean \
of the batch to all variables for calculating discriminator loss')
parser.add_argument('--learn_scale', type=bool, default=False, help='make the \
"scale" parameter at the output of the generator learnable (else fixed \
to 1')
# options pertaining to training
parser.add_argument('--learning_rate', type=float, default=0.1)
parser.add_argument('--batch_size', type=int, default=28)
parser.add_argument('--num_epochs', type=int, default=100)
parser.add_argument('--D_rounds', type=int, default=5, help='number of rounds \
of discriminator training')
parser.add_argument('--G_rounds', type=int, default=1, help='number of rounds \
of generator training')
parser.add_argument('--use_time', type=bool, default=False, help='enforce \
latent dimension 0 to correspond to time')
parser.add_argument('--WGAN', type=bool, default=False)
parser.add_argument('--WGAN_clip', type=bool, default=False)
parser.add_argument('--shuffle', type=bool, default=True)
parser.add_argument('--wrong_labels', type=bool, default=False, help='augment \
discriminator loss with real examples with wrong (~shuffled, sort of) labels')
# options pertaining to evaluation and exploration
parser.add_argument('--identifier', type=str, default='test', help='identifier \
string for output files')
# options pertaining to differential privacy
parser.add_argument('--dp', type=bool, default=False, help='train discriminator \
with differentially private SGD?')
parser.add_argument('--l2norm_bound', type=float, default=1e-5,
help='bound on norm of individual gradients for DP training')
parser.add_argument('--batches_per_lot', type=int, default=1,
help='number of batches per lot (for DP)')
parser.add_argument('--dp_sigma', type=float, default=1e-5,
help='sigma for noise added (for DP)')
return parser
def load_settings_from_file(settings):
"""
Handle loading settings from a JSON file, filling in missing settings from
the command line defaults, but otherwise overwriting them.
"""
settings_path = './experiments/settings/' + settings['settings_file'] + '.txt'
print('Loading settings from', settings_path)
settings_loaded = json.load(open(settings_path, 'r'))
# check for settings missing in file
for key in settings.keys():
if not key in settings_loaded:
print(key, 'not found in loaded settings - adopting value from command line defaults: ', settings[key])
# overwrite parsed/default settings with those read from file, allowing for
# (potentially new) default settings not present in file
settings.update(settings_loaded)
return settings