-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
228 lines (184 loc) · 9.43 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
# Import necessary modules
import streamlit as st
from langchain_groq import ChatGroq
from langchain.prompts import PromptTemplate
from langchain.chains import ConversationChain
from langchain.chains.conversation.memory import ConversationBufferWindowMemory
import random
from datetime import datetime
# Placeholder for the API key - you can retrieve it securely from your environment or other sources.
groq_api_key = st.secrets["groq_api_key"]
# Set up the page configuration for the Streamlit app
st.set_page_config(
page_title='Groq Chatbot', # Set the title of the web app
page_icon='🤖', # Add a robot emoji as the page icon
layout='wide', # Use a wide layout for more space
initial_sidebar_state='expanded' # Keep the sidebar expanded initially
)
# Function to initialize session state variables
def initialize_session_state():
# Store the chat history in session state if not already present
if 'chat_history' not in st.session_state:
st.session_state.chat_history = []
# Track the total number of messages
if 'total_messages' not in st.session_state:
st.session_state.total_messages = 0
# Track the session start time
if 'start_time' not in st.session_state:
st.session_state.start_time = None
# Function to get a custom prompt based on the selected persona
def get_custom_prompt():
# Retrieve the selected persona from the session state, defaulting to 'Default' if none is selected
persona = st.session_state.get('Selected persona', 'Default')
# Define different persona templates for the chatbot
personas = {
'Default': """You are a friendly and helpful AI assistant, providing clear, concise, and accurate responses.
Focus on being approachable and ensuring the user feels understood and supported.
Current conversation:
{history}
Human: {input}
AI:""",
'Expert': """You are a highly knowledgeable and authoritative expert across various fields.
Offer in-depth, precise, and technical explanations, citing examples or relevant research when necessary.
Avoid jargon when possible, but feel free to introduce advanced concepts where appropriate.
Current conversation:
{history}
Human: {input}
Expert:""",
'Creative': """You are an imaginative and inventive AI with a flair for creative problem-solving and thinking outside the box.
Use metaphors, vivid descriptions, and unconventional ideas to inspire and captivate the user.
Feel free to suggest unique approaches or surprising solutions to problems.
Current conversation:
{history}
Human: {input}
Creative AI:"""
}
# Return a prompt template for the selected persona, replacing the variables {history} and {input}
return PromptTemplate(
input_variables=['history', 'input'],
template=personas[persona]
)
# Main function where all chatbot-related logic runs
def main():
# Initialize session state variables
initialize_session_state()
# Sidebar setup for chat settings
with st.sidebar:
# Title for the sidebar with settings
st.title('Configure Your Chat Experience ⚙️')
# Model selection dropdown
st.subheader('Select AI Model 🤖')
model = st.selectbox(
'Choose a model:',
['llama3-70b-8192', 'gemma2-9b-it', 'mixtral-8x7b-32768'],
help='Select the Large Language Model (LLM) for your conversation'
)
# Conversational memory length slider
st.subheader('Set Conversation Memory 🔁')
memory_length = st.slider(
'Conversational Memory Length:',
1, 10, 5,
help='Number of previous messages to be remembered'
)
# Persona selection dropdown
st.subheader('Choose AI Personality 🎭')
st.session_state.selected_persona = st.selectbox(
'Select Conversation Style:',
['Default', 'Expert', 'Creative']
)
# Display chat statistics if the session has started
if st.session_state.start_time:
st.subheader('Conversation Overview 📊')
col1, col2 = st.columns(2)
# Column 1: Display number of messages
with col1:
st.metric('Total Messages Sent', len(st.session_state.chat_history))
# Column 2: Display chat duration
with col2:
duration = datetime.now() - st.session_state.start_time
st.metric('Session Duration', f'{duration.seconds // 60} minutes {duration.seconds % 60} seconds')
# Button to clear chat history with an emoji
if st.button('Clear All Chats and Start Fresh 🗑️', use_container_width=True):
st.session_state.chat_history = [] # Reset chat history
st.session_state.start_time = None # Reset the start time
st.rerun() # Rerun the app to refresh the state
# Set the title of the chatbot application with an emoji
st.title('Groq AI Assistant 🤖')
# Initialize the conversational memory buffer with the chosen memory length
memory = ConversationBufferWindowMemory(k=memory_length)
# Initialize the Groq chatbot with the selected model
groq_chat = ChatGroq(
groq_api_key=groq_api_key, # You will need to define or retrieve this API key earlier in the script
model_name=model # Uses the selected model from the sidebar
)
# Set up the conversation chain with the selected LLM, memory, and custom persona prompt
conversation = ConversationChain(
llm=groq_chat,
memory=memory,
prompt=get_custom_prompt() # The custom prompt based on selected persona
)
# Load and replay previous chat history from session state memory
for message in st.session_state.chat_history:
# Save the context of past conversations to memory (human input and AI output)
memory.save_context(
{'input': message['human']},
{'output': message['AI']}
)
# Display the chat history
for message in st.session_state.chat_history:
with st.container():
# Show the human's message with an emoji
st.write('You said 🗣️')
st.info(message['human']) # Display the human message with an info box
with st.container():
# Show the AI's response, indicating the selected persona mode with an emoji
st.write(f'AI Assistant ({st.session_state.selected_persona} mode) replied 🤖')
st.success(message['AI']) # Display the AI response with a success box
st.write('') # Add an empty line for spacing between chat messages
# User input section with an emoji
st.markdown('What do you want to ask? 💬') # Section heading
user_question = st.text_area(
'', # No label
height=100, # Height of the text area
placeholder='Ask me anything...', # Placeholder text for the user input box
key='user_input', # Key to store the user input
help='Type your question or message' # Help tooltip
)
# Create three columns for the buttons
col1, col2, col3 = st.columns([3, 1, 1])
# Send button in the middle column with an emoji
with col2:
send_button = st.button('Send Message 🚀', use_container_width=True)
# New Topic button in the last column to clear memory, with an emoji
with col3:
if st.button('Start New Conversation 🆕', use_container_width=True):
memory.clear() # Clear the conversation memory for a fresh topic
st.success('Chat history has been cleared. Start a new conversation! 🔄')
# If the user clicks 'Send' and there is a question in the input box
if send_button and user_question:
# Start timing the session if it's the user's first message
if not st.session_state.start_time:
st.session_state.start_time = datetime.now()
# Display a spinner while processing the response
with st.spinner('Processing your request... 🧠💡'):
try:
# Get the response from the conversation chain
response = conversation(user_question)
# Store the conversation in session state chat history
message = {'human': user_question, 'AI': response['response']}
st.session_state.chat_history.append(message)
# Rerun the app to display the new message
st.rerun()
except Exception as e:
# Show an error message if something goes wrong
st.error(f'Error: {str(e)}')
# Separator line between the chat and settings
st.markdown('---')
# Footer information about the current session, with dynamic persona and memory length info
st.markdown(
f'Chat powered by Groq AI in {st.session_state.selected_persona.lower()} mode | '
f'Remembering the last {memory_length} messages'
)
# Run the main function if the script is executed directly
if __name__ == '__main__':
main()