Python for Computational Linear Algebra Python packages numpy (numerical linear algebra) sympy (symbolic & computational linear algebra) Basic method sympy library Method Usage .rref() Gauss-Jordan eliminations .rank() Matrix rank .col_insert() Insert columns .row_insert() Insert rows .det() Matrix determinant .eigenvals() Matrix eigenvalues .eigenvects() Matrix eigenvactors .shape() Matrix shape @ Matrix multiplication .T Transpose matrix **(-1) Inverse matrix numpy.linalg library Method Usage .matrix_power(a,n) Matrix power .eig(a) eigenvalues & eigenvetctors .eigvals(a) eigenvalues only .det(a) Matrix determonant .matrix_rank() Matrix rank .solve(a, b) Solve a linear matrix equation, or system of linear scalar equations .inv(a) the inverse of a matrix .norm() Matrix/vector norm