Skip to content

Latest commit

 

History

History
37 lines (30 loc) · 1 KB

README.md

File metadata and controls

37 lines (30 loc) · 1 KB

Python for Computational Linear Algebra

Python packages

  • numpy (numerical linear algebra)
  • sympy (symbolic & computational linear algebra)

Basic method

sympy library

Method Usage
.rref() Gauss-Jordan eliminations
.rank() Matrix rank
.col_insert() Insert columns
.row_insert() Insert rows
.det() Matrix determinant
.eigenvals() Matrix eigenvalues
.eigenvects() Matrix eigenvactors
.shape() Matrix shape
@ Matrix multiplication
.T Transpose matrix
**(-1) Inverse matrix

numpy.linalg library

Method Usage
.matrix_power(a,n) Matrix power
.eig(a) eigenvalues & eigenvetctors
.eigvals(a) eigenvalues only
.det(a) Matrix determonant
.matrix_rank() Matrix rank
.solve(a, b) Solve a linear matrix equation, or system of linear scalar equations
.inv(a) the inverse of a matrix
.norm() Matrix/vector norm