-
Notifications
You must be signed in to change notification settings - Fork 83
/
utils.py
234 lines (170 loc) · 7 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
from typing import Union, Iterable
import numpy as np
import torch
import torch.nn.functional as F
from rdkit import Chem
import networkx as nx
from networkx.algorithms import isomorphism
from Bio.PDB.Polypeptide import is_aa
class Queue():
def __init__(self, max_len=50):
self.items = []
self.max_len = max_len
def __len__(self):
return len(self.items)
def add(self, item):
self.items.insert(0, item)
if len(self) > self.max_len:
self.items.pop()
def mean(self):
return np.mean(self.items)
def std(self):
return np.std(self.items)
def reverse_tensor(x):
return x[torch.arange(x.size(0) - 1, -1, -1)]
#####
def get_grad_norm(
parameters: Union[torch.Tensor, Iterable[torch.Tensor]],
norm_type: float = 2.0) -> torch.Tensor:
"""
Adapted from: https://pytorch.org/docs/stable/_modules/torch/nn/utils/clip_grad.html#clip_grad_norm_
"""
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = [p for p in parameters if p.grad is not None]
norm_type = float(norm_type)
if len(parameters) == 0:
return torch.tensor(0.)
device = parameters[0].grad.device
total_norm = torch.norm(torch.stack(
[torch.norm(p.grad.detach(), norm_type).to(device) for p in
parameters]), norm_type)
return total_norm
def write_xyz_file(coords, atom_types, filename):
out = f"{len(coords)}\n\n"
assert len(coords) == len(atom_types)
for i in range(len(coords)):
out += f"{atom_types[i]} {coords[i, 0]:.3f} {coords[i, 1]:.3f} {coords[i, 2]:.3f}\n"
with open(filename, 'w') as f:
f.write(out)
def write_sdf_file(sdf_path, molecules):
# NOTE Changed to be compatitble with more versions of rdkit
#with Chem.SDWriter(str(sdf_path)) as w:
# for mol in molecules:
# w.write(mol)
w = Chem.SDWriter(str(sdf_path))
w.SetKekulize(False)
for m in molecules:
if m is not None:
w.write(m)
# print(f'Wrote SDF file to {sdf_path}')
def residues_to_atoms(x_ca, atom_encoder):
x = x_ca
one_hot = F.one_hot(
torch.tensor(atom_encoder['C'], device=x_ca.device),
num_classes=len(atom_encoder)
).repeat(*x_ca.shape[:-1], 1)
return x, one_hot
def get_residue_with_resi(pdb_chain, resi):
res = [x for x in pdb_chain.get_residues() if x.id[1] == resi]
assert len(res) == 1
return res[0]
def get_pocket_from_ligand(pdb_model, ligand, dist_cutoff=8.0):
if ligand.endswith(".sdf"):
# ligand as sdf file
rdmol = Chem.SDMolSupplier(str(ligand))[0]
ligand_coords = torch.from_numpy(rdmol.GetConformer().GetPositions()).float()
resi = None
else:
# ligand contained in PDB; given in <chain>:<resi> format
chain, resi = ligand.split(':')
ligand = get_residue_with_resi(pdb_model[chain], int(resi))
ligand_coords = torch.from_numpy(
np.array([a.get_coord() for a in ligand.get_atoms()]))
pocket_residues = []
for residue in pdb_model.get_residues():
if residue.id[1] == resi:
continue # skip ligand itself
res_coords = torch.from_numpy(
np.array([a.get_coord() for a in residue.get_atoms()]))
if is_aa(residue.get_resname(), standard=True) \
and torch.cdist(res_coords, ligand_coords).min() < dist_cutoff:
pocket_residues.append(residue)
return pocket_residues
def batch_to_list(data, batch_mask):
# data_list = []
# for i in torch.unique(batch_mask):
# data_list.append(data[batch_mask == i])
# return data_list
# make sure batch_mask is increasing
idx = torch.argsort(batch_mask)
batch_mask = batch_mask[idx]
data = data[idx]
chunk_sizes = torch.unique(batch_mask, return_counts=True)[1].tolist()
return torch.split(data, chunk_sizes)
def num_nodes_to_batch_mask(n_samples, num_nodes, device):
assert isinstance(num_nodes, int) or len(num_nodes) == n_samples
if isinstance(num_nodes, torch.Tensor):
num_nodes = num_nodes.to(device)
sample_inds = torch.arange(n_samples, device=device)
return torch.repeat_interleave(sample_inds, num_nodes)
def rdmol_to_nxgraph(rdmol):
graph = nx.Graph()
for atom in rdmol.GetAtoms():
# Add the atoms as nodes
graph.add_node(atom.GetIdx(), atom_type=atom.GetAtomicNum())
# Add the bonds as edges
for bond in rdmol.GetBonds():
graph.add_edge(bond.GetBeginAtomIdx(), bond.GetEndAtomIdx())
return graph
def calc_rmsd(mol_a, mol_b):
""" Calculate RMSD of two molecules with unknown atom correspondence. """
graph_a = rdmol_to_nxgraph(mol_a)
graph_b = rdmol_to_nxgraph(mol_b)
gm = isomorphism.GraphMatcher(
graph_a, graph_b,
node_match=lambda na, nb: na['atom_type'] == nb['atom_type'])
isomorphisms = list(gm.isomorphisms_iter())
if len(isomorphisms) < 1:
return None
all_rmsds = []
for mapping in isomorphisms:
atom_types_a = [atom.GetAtomicNum() for atom in mol_a.GetAtoms()]
atom_types_b = [mol_b.GetAtomWithIdx(mapping[i]).GetAtomicNum()
for i in range(mol_b.GetNumAtoms())]
assert atom_types_a == atom_types_b
conf_a = mol_a.GetConformer()
coords_a = np.array([conf_a.GetAtomPosition(i)
for i in range(mol_a.GetNumAtoms())])
conf_b = mol_b.GetConformer()
coords_b = np.array([conf_b.GetAtomPosition(mapping[i])
for i in range(mol_b.GetNumAtoms())])
diff = coords_a - coords_b
rmsd = np.sqrt(np.mean(np.sum(diff * diff, axis=1)))
all_rmsds.append(rmsd)
if len(isomorphisms) > 1:
print("More than one isomorphism found. Returning minimum RMSD.")
return min(all_rmsds)
class AppendVirtualNodes:
def __init__(self, max_ligand_size, atom_encoder, symbol):
self.max_ligand_size = max_ligand_size
self.atom_encoder = atom_encoder
self.vidx = atom_encoder[symbol]
def __call__(self, data):
n_virt = self.max_ligand_size - data['num_lig_atoms']
mu = data['lig_coords'].mean(0, keepdim=True)
sigma = data['lig_coords'].std(0).max()
virt_coords = torch.randn(n_virt, 3) * sigma + mu
# insert virtual atom column
one_hot = torch.cat((data['lig_one_hot'][:, :self.vidx],
torch.zeros(data['num_lig_atoms'])[:, None],
data['lig_one_hot'][:, self.vidx:]), dim=1)
virt_one_hot = torch.zeros(n_virt, len(self.atom_encoder))
virt_one_hot[:, self.vidx] = 1
virt_mask = torch.ones(n_virt) * data['lig_mask'][0]
data['lig_coords'] = torch.cat((data['lig_coords'], virt_coords))
data['lig_one_hot'] = torch.cat((one_hot, virt_one_hot))
data['num_lig_atoms'] = self.max_ligand_size
data['lig_mask'] = torch.cat((data['lig_mask'], virt_mask))
data['num_virtual_atoms'] = n_virt
return data