forked from shaildeliwala/experiments
-
Notifications
You must be signed in to change notification settings - Fork 0
/
streamlit.py
126 lines (111 loc) · 7.07 KB
/
streamlit.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import pandas as pd
import streamlit as st
import plotly.express as px
@st.cache
def get_data():
return pd.read_csv("http://data.insideairbnb.com/united-states/ny/new-york-city/2019-09-12/visualisations/listings.csv")
df = get_data()
st.title("Streamlit 101: An in-depth introduction")
st.markdown("Welcome to this in-depth introduction to [Streamlit](www.streamlit.io)! For this exercise, we'll use an Airbnb [dataset](http://data.insideairbnb.com/united-states/ny/new-york-city/2019-09-12/visualisations/listings.csv) containing NYC listings.")
st.header("Customary quote")
st.markdown("> I just love to go home, no matter where I am, the most luxurious hotel suite in the world, I love to go home.\n\n—Michael Caine")
st.header("Airbnb NYC listings: data at a glance")
st.markdown("The first five records of the Airbnb data we downloaded.")
st.dataframe(df.head())
st.header("Caching our data")
st.markdown("Streamlit has a handy decorator [`st.cache`](https://streamlit.io/docs/api.html#optimize-performance) to enable data caching.")
st.code("""
@st.cache
def get_data():
url = "http://data.insideairbnb.com/united-states/ny/new-york-city/2019-09-12/visualisations/listings.csv"
return pd.read_csv(url)
""", language="python")
st.markdown("_To display a code block, pass in the string to display as code to [`st.code`](https://streamlit.io/docs/api.html#streamlit.code)_.")
with st.echo():
st.markdown("Alternatively, use [`st.echo`](https://streamlit.io/docs/api.html#streamlit.echo).")
st.header("Where are the most expensive properties located?")
st.subheader("On a map")
st.markdown("The following map shows the top 1% most expensive Airbnbs priced at $800 and above.")
st.map(df.query("price>=800")[["latitude", "longitude"]].dropna(how="any"))
st.subheader("In a table")
st.markdown("Following are the top five most expensive properties.")
st.write(df.query("price>=800").sort_values("price", ascending=False).head())
st.subheader("Selecting a subset of columns")
st.write(f"Out of the {df.shape[1]} columns, you might want to view only a subset. Streamlit has a [multiselect](https://streamlit.io/docs/api.html#streamlit.multiselect) widget for this.")
defaultcols = ["name", "host_name", "neighbourhood", "room_type", "price"]
cols = st.multiselect("Columns", df.columns.tolist(), default=defaultcols)
st.dataframe(df[cols].head(10))
st.header("Average price by room type")
st.write("You can also display static tables. As opposed to a data frame, with a static table you cannot sorting by clicking a column header.")
st.table(df.groupby("room_type").price.mean().reset_index()\
.round(2).sort_values("price", ascending=False)\
.assign(avg_price=lambda x: x.pop("price").apply(lambda y: "%.2f" % y)))
st.header("Which host has the most properties listed?")
listingcounts = df.host_id.value_counts()
top_host_1 = df.query('host_id==@listingcounts.index[0]')
top_host_2 = df.query('host_id==@listingcounts.index[1]')
st.write(f"""**{top_host_1.iloc[0].host_name}** is at the top with {listingcounts.iloc[0]} property listings.
**{top_host_2.iloc[1].host_name}** is second with {listingcounts.iloc[1]} listings. Following are randomly chosen
listings from the two displayed as JSON using [`st.json`](https://streamlit.io/docs/api.html#streamlit.json).""")
st.json({top_host_1.iloc[0].host_name: top_host_1\
[["name", "neighbourhood", "room_type", "minimum_nights", "price"]]\
.sample(2, random_state=4).to_dict(orient="records"),
top_host_2.iloc[0].host_name: top_host_2\
[["name", "neighbourhood", "room_type", "minimum_nights", "price"]]\
.sample(2, random_state=4).to_dict(orient="records")})
st.header("What is the distribution of property price?")
st.write("""Select a custom price range from the side bar to update the histogram below displayed as a Plotly chart using
[`st.plotly_chart`](https://streamlit.io/docs/api.html#streamlit.plotly_chart).""")
values = st.sidebar.slider("Price range", float(df.price.min()), float(df.price.clip(upper=1000.).max()), (50., 300.))
f = px.histogram(df.query(f"price.between{values}"), x="price", nbins=15, title="Price distribution")
f.update_xaxes(title="Price")
f.update_yaxes(title="No. of listings")
st.plotly_chart(f)
st.header("What is the distribution of availability in various neighborhoods?")
st.write("Using a radio button restricts selection to only one option at a time.")
st.write("💡 Notice how we use a static table below instead of a data frame. \
Unlike a data frame, if content overflows out of the section margin, \
a static table does not automatically hide it inside a scrollable area. \
Instead, the overflowing content remains visible.")
neighborhood = st.radio("Neighborhood", df.neighbourhood_group.unique())
show_exp = st.checkbox("Include expensive listings")
show_exp = " and price<200" if not show_exp else ""
@st.cache
def get_availability(show_exp, neighborhood):
return df.query(f"""neighbourhood_group==@neighborhood{show_exp}\
and availability_365>0""").availability_365.describe(\
percentiles=[.1, .25, .5, .75, .9, .99]).to_frame().T
st.table(get_availability(show_exp, neighborhood))
st.write("At 169 days, Brooklyn has the lowest average availability. At 226, Staten Island has the highest average availability.\
If we include expensive listings (price>=$200), the numbers are 171 and 230 respectively.")
st.markdown("_**Note:** There are 18431 records with `availability_365` 0 (zero), which I've ignored._")
df.query("availability_365>0").groupby("neighbourhood_group")\
.availability_365.mean().plot.bar(rot=0).set(title="Average availability by neighborhood group",
xlabel="Neighborhood group", ylabel="Avg. availability (in no. of days)")
st.pyplot()
st.header("Properties by number of reviews")
st.write("Enter a range of numbers in the sidebar to view properties whose review count falls in that range.")
minimum = st.sidebar.number_input("Minimum", min_value=0)
maximum = st.sidebar.number_input("Maximum", min_value=0, value=5)
if minimum > maximum:
st.error("Please enter a valid range")
else:
df.query("@minimum<=number_of_reviews<=@maximum").sort_values("number_of_reviews", ascending=False)\
.head(50)[["name", "number_of_reviews", "neighbourhood", "host_name", "room_type", "price"]]
st.write("486 is the highest number of reviews and two properties have it. Both are in the East Elmhurst \
neighborhood and are private rooms with prices $65 and $45. \
In general, listings with >400 reviews are priced below $100. \
A few are between $100 and $200, and only one is priced above $200.")
st.header("Images")
pics = {
"Cat": "https://cdn.pixabay.com/photo/2016/09/24/22/20/cat-1692702_960_720.jpg",
"Puppy": "https://cdn.pixabay.com/photo/2019/03/15/19/19/puppy-4057786_960_720.jpg",
"Sci-fi city": "https://storage.needpix.com/rsynced_images/science-fiction-2971848_1280.jpg"
}
pic = st.selectbox("Picture choices", list(pics.keys()), 0)
st.image(pics[pic], use_column_width=True, caption=pics[pic])
st.markdown("## Party time!")
st.write("Yay! You're done with this tutorial of Streamlit. Click below to celebrate.")
btn = st.button("Celebrate!")
if btn:
st.balloons()