-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdata_utils.py
119 lines (95 loc) · 5.24 KB
/
data_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import random
from typing import Callable, List, Optional
import t5
import torch
import tensorflow.compat.v1 as tf
import tensorflow_io as tfio
from t5.models.hf_model import tokens_to_batches
from t5.seqio.dataset_providers import ShardInfo
from torch.utils.data import IterableDataset
def sharded_dataset_fn(shards, split=None, shuffle_files=False):
if shuffle_files:
random.shuffle(shards)
dataset = tf.data.TextLineDataset(shards)
return dataset
def text_preprocessor(ds):
return ds.map(lambda text: {'targets': text})
def jsonl_preprocessor(ds):
"""
parse single line in jsonl file, extracts field `text`
"""
specs = {
"text": tf.TensorSpec(tf.TensorShape([]), tf.string)
}
return ds.map(lambda text: {'targets': tfio.experimental.serialization.decode_json(text, specs)['text']})
DEFAULT_SPM_PATH = "./vocabs/sentencepiece.model"
DEFAULT_EXTRA_IDS = 100
def get_vocabulary(vocab_path=DEFAULT_SPM_PATH):
return t5.seqio.SentencePieceVocabulary(vocab_path, DEFAULT_EXTRA_IDS)
def get_output_features(vocab_path=DEFAULT_SPM_PATH):
return {
"inputs": t5.seqio.Feature(vocabulary=get_vocabulary(vocab_path), add_eos=True, required=False),
"targets": t5.seqio.Feature(vocabulary=get_vocabulary(vocab_path), add_eos=True)
}
DEFAULT_OUTPUT_FEATURES = {
"inputs": t5.seqio.Feature(vocabulary=get_vocabulary(), add_eos=True, required=False),
"targets": t5.seqio.Feature(vocabulary=get_vocabulary(), add_eos=True)
}
class T5PretrainingDataset(IterableDataset):
def __init__(self, shards: List[str], batch_size: int,
task: str = 'span_corruption',
text_preprocessor: Callable = text_preprocessor,
inputs_len: int = 32, targets_len: int = 32,
vocab_path: str = DEFAULT_SPM_PATH, shard_info: Optional[ShardInfo] = None,
shuffle: bool = True):
"""Torch IterableDataset wrapper for span_corruption task from t5.
Uses tf.datasets under the hood.
It is supposed that shards are already split between workers in multi-gpu setting.
It is possible to give all shards for each worker with shard_info specified, but the performance is not
tested. Current use case for shard_info is to split single validation shard to multiple workers.
Args:
shards (List[str]): list of shards paths
batch_size (int): batch size to use (per worker)
task (str): t5 task name, e.g. `span_corruption`, `prefix_lm`. Defaults to span_corruption.
text_preprocessor (Callable, optional): defines how to read data from shards. Defaults to text_preprocessor.
inputs_len (int, optional): input sequence length. Defaults to 32.
targets_len (int, optional): target sequence length. Defaults to 32.
vocab_path (str, optional): path to spm vocabulary to use. Defaults to DEFAULT_SPM_PATH.
shard_info (Optional[ShardInfo], optional): worker index and num_shards. It is used to shard the data
from `shards`. Current use case is when `shards` is a single shard and we split it on num_shards for
validation on multiple gpus.
Defaults to None.
"""
self.sequence_length = {"inputs": inputs_len, "targets": targets_len}
self.shards = shards
self.batch_size = batch_size
self.text_preprocessor = text_preprocessor
self.task = t5.data.Task(task,
splits=[],
dataset_fn=lambda split, shuffle_files: sharded_dataset_fn(self.shards, split,
shuffle_files),
text_preprocessor=[self.text_preprocessor],
token_preprocessor=getattr(t5.data.preprocessors, task),
output_features=get_output_features(vocab_path),
metric_fns=[])
self.tfdataset = self.task.get_dataset(split='', sequence_length=self.sequence_length,
shuffle=shuffle, shard_info=shard_info)
self.tfdataset = tokens_to_batches(self.tfdataset,
sequence_length=self.sequence_length,
batch_size=self.batch_size,
output_features=get_output_features(vocab_path))
def __iter__(self):
# todo: make dataset infinite?
for x in self.tfdataset:
if 'targets_mask' in x: # do not compute loss on paddings
x['targets'] -= (1 - x['targets_mask']) * 100
yield {k: torch.from_numpy(x[k]).type(torch.long) for k in x}
def assert_vocabs(tokenizer, vocab_path=DEFAULT_SPM_PATH):
"""Asserts that default vocabulary from t5 repo has the same as HFTransformers tokenizer special tokens
Args:
tokenizer: HuggingFace Transformers tokenizer to check
"""
vocab = get_vocabulary(vocab_path=vocab_path)
assert vocab.unk_id == tokenizer.unk_token_id
assert vocab.eos_id == tokenizer.eos_token_id
assert vocab.pad_id == tokenizer.pad_token_id