-
Notifications
You must be signed in to change notification settings - Fork 0
/
os.c
607 lines (541 loc) · 21.3 KB
/
os.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
// Modified by Joseph Chen, Arjun Deopujari, and Nick Moon - November 2019
// Modified by Mustafa Hotaki 8/1/2018
// MODIFIED BY SILE SHU 2017.6
// os.c
// Runs on LM4F120/TM4C123
// A very simple real time operating system with minimal features.
// Daniel Valvano
// January 29, 2015
/* This example accompanies the book
"Embedded Systems: Real Time Interfacing to ARM Cortex M Microcontrollers",
ISBN: 978-1463590154, Jonathan Valvano, copyright (c) 2015
Programs 4.4 through 4.12, section 4.2
Copyright 2015 by Jonathan W. Valvano, valvano@mail.utexas.edu
You may use, edit, run or distribute this file
as long as the above copyright notice remains
THIS SOFTWARE IS PROVIDED "AS IS". NO WARRANTIES, WHETHER EXPRESS, IMPLIED
OR STATUTORY, INCLUDING, BUT NOT LIMITED TO, IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE APPLY TO THIS SOFTWARE.
VALVANO SHALL NOT, IN ANY CIRCUMSTANCES, BE LIABLE FOR SPECIAL, INCIDENTAL,
OR CONSEQUENTIAL DAMAGES, FOR ANY REASON WHATSOEVER.
For more information about my classes, my research, and my books, see
http://users.ece.utexas.edu/~valvano/
*/
#include <stdint.h>
#include "os.h"
#include "PLL.h"
#include "tm4c123gh6pm.h"
#include "LCD.h"
#include "UART.h"
#include "joystick.h"
// Functions implemented in assembly files
void OS_DisableInterrupts(void); // Disable interrupts
void OS_EnableInterrupts(void); // Enable interrupts
long StartCritical(void); // previous I bit, disable interrupts
void EndCritical(long sr); // restore I bit to previous value
void WaitForInterrupt(void); // low power mode
void StartOS(void);
// Periodic task function pointers
void (*PeriodicTask1)(void);
void (*PeriodicTask2)(void);
// Button task function pointers
void (*ButtonOneTask)(void);
void (*ButtonTwoTask)(void);
#define NUMTHREADS 20 // Maximum number of threads
#define STACKSIZE 100 // Number of 32-bit words in stack
// TCB Data Structure
struct tcb {
int32_t *sp; // Pointer to stack (valid for threads not running
struct tcb *next; // Linked list pointer
uint32_t id; // Thread #
uint32_t available; // Used to indicate if this tcb is available or not
uint32_t sleepCt; // Sleep counter in MS
};
typedef struct tcb tcbType;
tcbType *RunPt; // Pointer to the currently running TCB
tcbType tcbs[NUMTHREADS]; // Statically allocated memory for TCBs
int32_t Stacks[NUMTHREADS][STACKSIZE]; // Statically allocated memory for Stacks
// ******** OS_Init ************
// initialize operating system, disable interrupts until OS_Launch
// initialize OS controlled I/O: systick, 80 MHz PLL
// input: none
// output: none
void OS_Init(void){int i;
OS_DisableInterrupts();
PLL_Init(Bus80MHz); // set processor clock to 80 MHz
for(i = 0; i < NUMTHREADS; i++){
tcbs[i].available = 1; // initial available
}
InitTimer2A(TIME_1MS); // initialize Timer2A which is used for software timer and decrease the sleepCt
InitTimer3A();
OS_ClearMsTime();
NVIC_ST_CTRL_R = 0; // disable SysTick during setup
NVIC_ST_CURRENT_R = 0; // any write to current clears it
// lowest PRI so only foreground interrupted
NVIC_SYS_PRI3_R =(NVIC_SYS_PRI3_R&0x00FFFFFF)|0xE0000000; // priority 7
}
void SetInitialStack(int i){
tcbs[i].sp = &Stacks[i][STACKSIZE-16]; // thread stack pointer
Stacks[i][STACKSIZE-1] = 0x01000000; // thumb bit
Stacks[i][STACKSIZE-3] = 0x14141414; // R14
Stacks[i][STACKSIZE-4] = 0x12121212; // R12
Stacks[i][STACKSIZE-5] = 0x03030303; // R3
Stacks[i][STACKSIZE-6] = 0x02020202; // R2
Stacks[i][STACKSIZE-7] = 0x01010101; // R1
Stacks[i][STACKSIZE-8] = 0x00000000; // R0
Stacks[i][STACKSIZE-9] = 0x11111111; // R11
Stacks[i][STACKSIZE-10] = 0x10101010; // R10
Stacks[i][STACKSIZE-11] = 0x09090909; // R9
Stacks[i][STACKSIZE-12] = 0x08080808; // R8
Stacks[i][STACKSIZE-13] = 0x07070707; // R7
Stacks[i][STACKSIZE-14] = 0x06060606; // R6
Stacks[i][STACKSIZE-15] = 0x05050505; // R5
Stacks[i][STACKSIZE-16] = 0x04040404; // R4
}
///******** OS_Launch ***************
// start the scheduler, enable interrupts
// Inputs: number of 20ns clock cycles for each time slice
// (maximum of 24 bits)
// Outputs: none (does not return)
void OS_Launch(unsigned long theTimeSlice){
NVIC_ST_RELOAD_R = theTimeSlice - 1; // reload value
NVIC_ST_CTRL_R = 0x00000007; // enable, core clock and interrupt arm
StartOS(); // start on the first task
}
// ******** OS_Suspend ************
// suspend execution of currently running thread
// scheduler will choose another thread to execute
// Can be used to implement cooperative multitasking
// Same function as OS_Sleep(0)
// input: none
// output: none
void OS_Suspend(void) {
NVIC_ST_CURRENT_R = 0; // reset counter
NVIC_INT_CTRL_R = 0x04000000; // trigger SysTick
}
//******** OS_AddThread ***************
// add a foregound thread to the scheduler
// Inputs: pointer to a void/void foreground task
// number of bytes allocated for its stack
// priority, 0 is highest, 5 is the lowest
// Outputs: 1 if successful, 0 if this thread can not be added
// stack size must be divisable by 8 (aligned to double word boundary)
static uint32_t ThreadNum = 0;
int OS_AddThread(void(*task)(void),
unsigned long stackSize, unsigned long priority) {
unsigned char i,j;
int32_t status,thread;
status = StartCritical();
if (ThreadNum == NUMTHREADS){ // no available tcbs
return 0;
}
else{
if (ThreadNum == 0){ // start add thread
tcbs[0].available = 0;
tcbs[0].next = &tcbs[0]; // first, create a single cycle
RunPt = &tcbs[0]; //start from tcbs[0]
thread = 0;
}
else{ // not the start
for (i=0;i<NUMTHREADS;i++){
if (tcbs[i].available) break; // find an available tcb for the new thread
}
thread = i;
tcbs[i].available = 0; // make this tcb no longer available
for (j = (thread + NUMTHREADS - 1)%NUMTHREADS; j != thread; j = (j + NUMTHREADS - 1)%NUMTHREADS){
if (tcbs[j].available == 0) break; // find a previous tcb which has been used
}
// add this tcb into the link list cycle
tcbs[thread].next = tcbs[j].next;
tcbs[j].next = &tcbs[thread];
}
tcbs[thread].id = thread;
SetInitialStack(thread);
Stacks[thread][STACKSIZE-2] = (int32_t)(task); // PC
ThreadNum++;
EndCritical(status);
return 1;
}
}
//******** OS_Id ***************
// returns the thread ID for the currently running thread
// Inputs: none
// Outputs: Thread ID, number greater than zero
unsigned long OS_Id(void) {
return RunPt->id;
}
// ******** OS_Wait ************
// decrement semaphore
// input: pointer to a counting semaphore
// output: none
void OS_Wait(Sema4Type *semaPt){
OS_DisableInterrupts();
while (semaPt->Value == 0) {
OS_EnableInterrupts();
OS_Suspend();
OS_DisableInterrupts();
}
semaPt->Value -= 1;
OS_EnableInterrupts();
}
// ******** OS_Signal ************
// increment semaphore
// input: pointer to a counting semaphore
// output: none
void OS_Signal(Sema4Type *semaPt){
int32_t status;
status = StartCritical();
semaPt->Value += 1;
EndCritical(status);
}
// ******** OS_InitSemaphore ************
// initialize semaphore
// input: pointer to a semaphore
// output: none
void OS_InitSemaphore(Sema4Type *semaPt, long value){
int32_t status;
status = StartCritical();
semaPt->Value = value;
EndCritical(status);
}
// ******** OS_bWait ************
// input: pointer to a binary semaphore
// output: none
void OS_bWait(Sema4Type *semaPt){
OS_DisableInterrupts();
while (semaPt->Value == 0) {
OS_EnableInterrupts();
OS_Suspend();
OS_DisableInterrupts();
}
semaPt->Value = 0;
OS_EnableInterrupts();
}
// ******** OS_bSignal ************
// input: pointer to a binary semaphore
// output: none
void OS_bSignal(Sema4Type *semaPt){
int32_t status;
status = StartCritical();
if (semaPt->Value == 1) {
semaPt->Value = 0;
}
else {
semaPt->Value = 1;
}
EndCritical(status);
}
// ******** OS_Sleep ************
// place this thread into a dormant state
// input: number of msec to sleep
// output: none
// OS_Sleep(0) implements cooperative multitasking
void OS_Sleep(unsigned long sleepTime){
int32_t status;
status = StartCritical();
RunPt->sleepCt = sleepTime;
EndCritical(status);
OS_Suspend();
}
// ******** OS_Kill ************
// kill the currently running thread, release its TCB and stack
// input: none
// output: none
void OS_Kill(void){
unsigned char i;
int32_t thread;
RunPt->available = 1;
thread = OS_Id();
for (i = (thread + NUMTHREADS - 1) % NUMTHREADS; i != thread; i = (i + NUMTHREADS - 1) % NUMTHREADS){
if (tcbs[i].available == 0)
break; // find the previous used tcb
}
ThreadNum--;
tcbs[i].next = tcbs[thread].next;
OS_Suspend(); // switch the thread
}
void Scheduler(void){
tcbType *temp = RunPt->next;
while (temp != RunPt) {
if (!temp->available && temp->sleepCt == 0) {
RunPt = temp;
return;
}
temp = temp->next;
}
}
//******** OS_AddPeriodicThread ***************
// add a background periodic task
// typically this function receives the highest priority
// Inputs: pointer to a void/void background function
// period given in system time units (12.5ns)
// priority 0 is the highest, 5 is the lowest
// Outputs: 1 if successful, 0 if this thread can not be added
// You are free to select the time resolution for this function
// It is assumed that the user task will run to completion and return
// This task can not spin, block, loop, sleep, or kill
// This task can call OS_Signal OS_bSignal OS_AddThread
// This task does not have a Thread ID
int OS_AddPeriodicThread(void(*task)(void),
unsigned long period, unsigned long priority) {
static uint16_t PeriodTaskCt;
if (PeriodTaskCt == 0){
PeriodicTask1 = task;
InitTimer1A(period,priority);
}
else {
PeriodicTask2 = task;
InitTimer4A(period,priority);
}
PeriodTaskCt++;
return 1;
}
// Timing Functions ------------------------------------------------------------------------------
// ******** OS_Time ************
// return the system time
// Inputs: none
// Outputs: time in 12.5ns units, 0 to 4294967295
// The time resolution should be less than or equal to 1us, and the precision 32 bits
// It is ok to change the resolution and precision of this function as long as
// this function and OS_TimeDifference have the same resolution and precision
unsigned long OS_Time(void) {
return TIMER3_TAILR_R - TIMER3_TAV_R;
}
// ******** OS_TimeDifference ************
// Calculates difference between two times
// Inputs: two times measured with OS_Time
// Outputs: time difference in 12.5ns units
// The time resolution should be less than or equal to 1us, and the precision at least 12 bits
// It is ok to change the resolution and precision of this function as long as
// this function and OS_Time have the same resolution and precision
unsigned long OS_TimeDifference(unsigned long start, unsigned long stop) {
return stop-start;
}
// Ms time system
static uint32_t MSTime;
// ******** OS_ClearMsTime ************
// sets the system time to zero
// Inputs: none
// Outputs: none
// You are free to change how this works
void OS_ClearMsTime(void) {
MSTime = 0;
}
// ******** OS_MsTime ************
// reads the current time in msec
// Inputs: none
// Outputs: time in ms units
// You are free to select the time resolution for this function
// It is ok to make the resolution to match the first call to OS_AddPeriodicThread
unsigned long OS_MsTime(void) {
return MSTime;
}
// Timers ------------------------------------------------------------------------------
void InitTimer1A(unsigned long period, uint32_t priority) {
long sr;
volatile unsigned long delay;
sr = StartCritical();
SYSCTL_RCGCTIMER_R |= 0x02;
while((SYSCTL_RCGCTIMER_R & 0x02) == 0){} // allow time for clock to stabilize
TIMER1_CTL_R &= ~TIMER_CTL_TAEN; // 1) disable timer1A during setup
// 2) configure for 32-bit timer mode
TIMER1_CFG_R = TIMER_CFG_32_BIT_TIMER;
// 3) configure for periodic mode, default down-count settings
TIMER1_TAMR_R = TIMER_TAMR_TAMR_PERIOD;
TIMER1_TAILR_R = period - 1; // 4) reload value
// 5) clear timer1A timeout flag
TIMER1_ICR_R = TIMER_ICR_TATOCINT;
TIMER1_IMR_R |= TIMER_IMR_TATOIM;// 6) arm timeout interrupt
// 7) priority shifted to bits 15-13 for timer1A
NVIC_PRI5_R = (NVIC_PRI5_R&0xFFFF00FF)|(priority << 13); //3
NVIC_EN0_R = NVIC_EN0_INT21; // 8) enable interrupt 21 in NVIC
TIMER1_TAPR_R = 0;
TIMER1_CTL_R |= TIMER_CTL_TAEN; // 9) enable timer1A
EndCritical(sr);
}
void Timer1A_Handler(void){
TIMER1_ICR_R = TIMER_ICR_TATOCINT;// acknowledge timer1A timeout
(*PeriodicTask1)();
}
void InitTimer2A(unsigned long period) {
long sr;
volatile unsigned long delay;
sr = StartCritical();
SYSCTL_RCGCTIMER_R |= 0x04;
while((SYSCTL_RCGCTIMER_R & 0x04) == 0){} // allow time for clock to stabilize
TIMER2_CTL_R &= ~TIMER_CTL_TAEN; // 1) disable timer2A during setup
// 2) configure for 32-bit timer mode
TIMER2_CFG_R = TIMER_CFG_32_BIT_TIMER;
// 3) configure for periodic mode, default down-count settings
TIMER2_TAMR_R = TIMER_TAMR_TAMR_PERIOD;
TIMER2_TAILR_R = period - 1; // 4) reload value
// 5) clear timer2A timeout flag
TIMER2_ICR_R = TIMER_ICR_TATOCINT;
TIMER2_IMR_R |= TIMER_IMR_TATOIM;// 6) arm timeout interrupt
// 7) priority shifted to bits 31-29 for timer2A
NVIC_PRI5_R = (NVIC_PRI5_R&0x00FFFFFF)|(2 << 29);
NVIC_EN0_R = NVIC_EN0_INT23; // 8) enable interrupt 23 in NVIC
TIMER2_TAPR_R = 0;
TIMER2_CTL_R |= TIMER_CTL_TAEN; // 9) enable timer2A
EndCritical(sr);
}
void Timer2A_Handler(void){
int i;
TIMER2_ICR_R = TIMER_ICR_TATOCINT;// acknowledge timer2A timeout
MSTime++;
for (i=0; i<NUMTHREADS; i++){
if (!tcbs[i].available && tcbs[i].sleepCt != 0) {
tcbs[i].sleepCt--;
}
}
}
void InitTimer3A(void) {
long sr;
sr = StartCritical();
SYSCTL_RCGCTIMER_R |= 0x08;
while((SYSCTL_RCGCTIMER_R & 0x08) == 0){} // allow time for clock to stabilize
TIMER3_CTL_R &= ~TIMER_CTL_TAEN; // 1) disable timer3A during setup
// 2) configure for 32-bit timer mode
TIMER3_CFG_R = TIMER_CFG_32_BIT_TIMER;
// 3) configure for periodic mode, default down-count settings
TIMER3_TAMR_R = TIMER_TAMR_TAMR_PERIOD;
TIMER3_TAILR_R = 0xFFFFFFFF - 1; // 4) reload value
// 5) clear timer3A timeout flag
TIMER3_ICR_R = TIMER_ICR_TATOCINT;
TIMER3_IMR_R |= TIMER_IMR_TATOIM;// 6) arm timeout interrupt
// 7) priority shifted to bits for timer3A
NVIC_PRI8_R = (NVIC_PRI8_R&0x00FFFFFF)|(1 << 29); //1
NVIC_EN1_R = NVIC_EN1_INT35; // 8) enable interrupt 35 in NVIC
TIMER3_TAPR_R = 0;
TIMER3_CTL_R |= TIMER_CTL_TAEN; // 9) enable timer3A
EndCritical(sr);
}
void Timer3A_Handler(void){
TIMER3_ICR_R = TIMER_ICR_TATOCINT;// acknowledge timer1A timeout
}
void InitTimer4A(uint32_t period, uint32_t priority) {
long sr;
sr = StartCritical();
SYSCTL_RCGCTIMER_R |= 0x10;
while((SYSCTL_RCGCTIMER_R & 0x10) == 0){} // allow time for clock to stabilize
TIMER4_CTL_R &= ~TIMER_CTL_TAEN; // 1) disable timer4A during setup
// 2) configure for 32-bit timer mode
TIMER4_CFG_R = TIMER_CFG_32_BIT_TIMER;
// 3) configure for periodic mode, default down-count settings
TIMER4_TAMR_R = TIMER_TAMR_TAMR_PERIOD;
TIMER4_TAILR_R = period - 1; // 4) reload value
// 5) clear timer4A timeout flag
TIMER4_ICR_R = TIMER_ICR_TATOCINT;
TIMER4_IMR_R |= TIMER_IMR_TATOIM;// 6) arm timeout interrupt
// 7) priority shifted to bits 15-13 for timer1A
NVIC_PRI17_R = (NVIC_PRI17_R&0xFF00FFFF)|(priority << 21); //3
NVIC_EN2_R = NVIC_EN2_INT70; // 8) enable interrupt 70 in NVIC
TIMER4_TAPR_R = 0;
TIMER4_CTL_R |= TIMER_CTL_TAEN; // 9) enable timer4A
EndCritical(sr);
}
void Timer4A_Handler(void){
TIMER4_ICR_R = TIMER_ICR_TATOCINT;// acknowledge timer4A timeout
(*PeriodicTask2)();
}
// Button Tasks ------------------------------------------------------------------------
#define BUTTON1 (*((volatile uint32_t *)0x40007100)) /* PD6 */
#define BUTTON2 (*((volatile uint32_t *)0x40007200)) /* PD7 */
volatile static uint32_t Last1, Last2;
void ButtonOneInit(uint8_t priority){
SYSCTL_RCGCGPIO_R |= 0x00000008; // 1) activate clock for Port D
while((SYSCTL_PRGPIO_R&0x08) == 0){};// allow time for clock to stabilize
// 2) no need to unlock PD6
GPIO_PORTD_AMSEL_R &= ~0x40; // 3) disable analog on PD6
// 4) configure PD6 as GPIO
GPIO_PORTD_PCTL_R = (GPIO_PORTD_PCTL_R&0xF0FFFFFF)+0x00000000;
GPIO_PORTD_DIR_R &= ~0x40; // 5) make PD6 input
GPIO_PORTD_AFSEL_R &= ~0x40; // 6) disable alt funct on PD6
GPIO_PORTD_DEN_R |= 0x40; // 7) enable digital I/O on PD6
GPIO_PORTD_PUR_R |= 0x40; // enable weak pull-up on PD6
GPIO_PORTD_IS_R &= ~0x40; // (d) PD6 is edge-sensitive
GPIO_PORTD_IBE_R |= 0x40; // PD6 is both edges
GPIO_PORTD_ICR_R = 0x40; // (e) clear flag6
GPIO_PORTD_IM_R |= 0x40; // (f) arm interrupt on PD6 *** No IME bit as mentioned in Book ***
NVIC_PRI0_R = (NVIC_PRI0_R&0x1FFFFFFF)|(priority << 29); // (g) priority 2
NVIC_EN0_R = 0x00000008; // (h) enable interrupt 3 in NVIC
Last1 = BUTTON1;
}
void ButtonTwoInit(uint8_t priority){
SYSCTL_RCGCGPIO_R |= 0x00000008; // 1) activate clock for Port D
while((SYSCTL_PRGPIO_R&0x08) == 0){};// allow time for clock to stabilize
GPIO_PORTD_LOCK_R = 0x4C4F434B; // 2) unlock GPIO Port D
GPIO_PORTD_CR_R = 0xFF; // allow changes to PD7-0
GPIO_PORTD_AMSEL_R &= ~0x80; // 3) disable analog on PD7
// 4) configure PD7 as GPIO
GPIO_PORTD_PCTL_R = (GPIO_PORTD_PCTL_R&0x0FFFFFFF)+0x00000000;
GPIO_PORTD_DIR_R &= ~0x80; // 5) make PD6 input
GPIO_PORTD_AFSEL_R &= ~0x80; // 6) disable alt funct on PD7
GPIO_PORTD_DEN_R |= 0x80; // 7) enable digital I/O on PD7
GPIO_PORTD_PUR_R |= 0x80; // enable weak pull-up on PD7
GPIO_PORTD_IS_R &= ~0x80; // (d) PD6 is edge-sensitive
GPIO_PORTD_IBE_R |= 0x80; // PD6 is both edges
GPIO_PORTD_ICR_R = 0x80; // (e) clear flag7
GPIO_PORTD_IM_R |= 0x80; // (f) arm interrupt on PD7 *** No IME bit as mentioned in Book ***
NVIC_PRI0_R = (NVIC_PRI0_R&0x1FFFFFFF)|(priority << 29); // (g) priority 2
NVIC_EN0_R = 0x00000008; // (h) enable interrupt 3 in NVIC
Last2 = BUTTON2;
}
void static DebouncePD6(void) {
OS_Sleep(10); //foreground sleep, must run within 5ms
Last1 = BUTTON1;
GPIO_PORTD_ICR_R = 0x40;
GPIO_PORTD_IM_R |= 0x40;
OS_Kill();
}
void static DebouncePD7(void) {
OS_Sleep(10); //foreground sleep, must run within 5ms
Last2 = BUTTON2;
GPIO_PORTD_ICR_R = 0x80;
GPIO_PORTD_IM_R |= 0x80;
OS_Kill();
}
void GPIOPortD_Handler(void) { // called on touch of either SW1 or SW2
if(GPIO_PORTD_RIS_R & 0x40){ // BUTTON1 touched
GPIO_PORTD_IM_R &= ~0x40; //disarm interrupt on PD6
if (Last1){
(*ButtonOneTask)();
}
OS_AddThread(DebouncePD6,128,2);
}
else if(GPIO_PORTD_RIS_R & 0x80){ // BUTTON2 touched
GPIO_PORTD_IM_R &= ~0x80; //disarm interrupt on PD7
if (Last2){
(*ButtonTwoTask)();
}
OS_AddThread(DebouncePD7,128,2);
}
}
//******** OS_AddSW1Task ***************
// add a background task to run whenever the BUTTON1 (PD6) button is pushed
// Inputs: pointer to a void/void background function
// priority 0 is the highest, 5 is the lowest
// Outputs: 1 if successful, 0 if this thread can not be added
// It is assumed that the user task will run to completion and return
// This task can not spin, block, loop, sleep, or kill
// This task can call OS_Signal OS_bSignal OS_AddThread
// This task does not have a Thread ID
int OS_AddSW1Task(void(*task)(void), unsigned long priority) {
ButtonOneTask = task;
ButtonOneInit(priority);
return 1;
}
//******** OS_AddSW2Task ***************
// add a background task to run whenever the BUTTON2 (PD7) button is pushed
// Inputs: pointer to a void/void background function
// priority 0 is highest, 5 is lowest
// Outputs: 1 if successful, 0 if this thread can not be added
// It is assumed user task will run to completion and return
// This task can not spin block loop sleep or kill
// This task can call issue OS_Signal, it can call OS_AddThread
// This task does not have a Thread ID
int OS_AddSW2Task(void(*task)(void), unsigned long priority) {
ButtonTwoTask = task;
ButtonTwoInit(priority);
return 1;
}