-
Notifications
You must be signed in to change notification settings - Fork 18
/
Copy pathrun_denoise.py
executable file
·462 lines (401 loc) · 18.7 KB
/
run_denoise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
#!/usr/bin/env python3
from nilearn.glm import regression
from nilearn.glm.first_level.design_matrix import make_first_level_design_matrix
import nibabel as nb
import numpy as np
import os, pandas, sys, pdb, argparse, copy, scipy, jinja2
from os.path import join as pjoin
from nilearn import plotting
from nilearn.signal import butterworth
from nilearn.input_data import NiftiMasker
import matplotlib
import pylab as plt
import seaborn as sns
from nilearn._utils.niimg import load_niimg
from nipype.algorithms import confounds as nac
parser = argparse.ArgumentParser(description='Function for performing nuisance regression. Saves resulting output '
'nifti file, information about nuisance regressors and motion (html '
'report), and outputs nibabel object containing clean data')
parser.add_argument('img_file', help='4d nifti img: file path or nibabel object loaded into memory')
parser.add_argument('tsv_file', help='tsv file containing nuisance regressors to be removed')
parser.add_argument('out_path', help='output directory for saving new data file')
parser.add_argument('--col_names',
help='which columns of TSV file to include as nuisance regressors. defaults to ALL columns.',
nargs="+")
parser.add_argument('--hp_filter', help='frequency cut-off for high pass filter (removing low frequencies). Recommend '
'.009 Hz')
parser.add_argument('--lp_filter', help='frequency cut-off for low pass filter (removing high frequencies). Recommend '
'.1 Hz for non-task data')
parser.add_argument('--out_figure_path',
help='output directory for saving figures. Defaults to location of out_path + _figures')
args = parser.parse_args()
img_file = args.img_file
tsv_file = args.tsv_file
out_path = args.out_path
col_names = args.col_names
hp_filter = args.hp_filter
lp_filter = args.lp_filter
out_figure_path = args.out_figure_path
def denoise(img_file, tsv_file, out_path, col_names=False, hp_filter=False, lp_filter=False, out_figure_path=False):
nii_ext = '.nii.gz'
FD_thr = [.5]
sc_range = np.arange(-1, 3)
constant = 'constant'
# read in files
img = load_niimg(img_file)
# get file info
img_name = os.path.basename(img.get_filename())
file_base = img_name[0:img_name.find('.')]
save_img_file = pjoin(out_path, file_base + \
'_NR' + nii_ext)
data = img.get_fdata()
df_orig = pandas.read_csv(tsv_file, '\t', na_values='n/a')
df = copy.deepcopy(df_orig)
Ntrs = df.values.shape[0]
print('# of TRs: ' + str(Ntrs))
assert (Ntrs == data.shape[len(data.shape) - 1])
# select columns to use as nuisance regressors
if col_names:
df = df[col_names]
str_append = ' [SELECTED regressors in CSV]'
else:
col_names = df.columns.tolist()
str_append = ' [ALL regressors in CSV]'
# fill in missing nuisance values with mean for that variable
for col in df.columns:
if sum(df[col].isnull()) > 0:
print('Filling in ' + str(sum(df[col].isnull())) + ' NaN value for ' + col)
df[col] = df[col].fillna(np.mean(df[col]))
print('# of Confound Regressors: ' + str(len(df.columns)) + str_append)
# implement HP filter in regression
TR = img.header.get_zooms()[-1]
frame_times = np.arange(Ntrs) * TR
if hp_filter:
hp_filter = float(hp_filter)
assert (hp_filter > 0)
df = make_first_level_design_matrix(frame_times, high_pass=hp_filter, add_regs=df.values,
add_reg_names=df.columns.tolist())
# fn adds intercept into dm
hp_cols = [col for col in df.columns if 'drift' in col]
print('# of High-pass Filter Regressors: ' + str(len(hp_cols)))
else:
# add in intercept column into data frame
df[constant] = 1
print('No High-pass Filter Applied')
dm = df.values
# prep data
data = np.reshape(data, (-1, Ntrs))
data_mean = np.mean(data, axis=1)
Nvox = len(data_mean)
# setup and run regression
model = regression.OLSModel(dm)
results = model.fit(data.T)
if not hp_filter:
results_orig_resid = copy.deepcopy(results.residuals) # save for rsquared computation
# apply low-pass filter
if lp_filter:
# input to butterworth fn is time x voxels
low_pass = float(lp_filter)
Fs = 1. / TR
if low_pass >= Fs / 2:
raise ValueError('Low pass filter cutoff if too close to the Nyquist frequency (%s)' % (Fs / 2))
temp_img_file = pjoin(out_path, file_base + \
'_temp' + nii_ext)
temp_img = nb.Nifti1Image(np.reshape(results.residuals.T + np.reshape(data_mean, (Nvox, 1)), img.shape).astype('float32'),
img.affine, header=img.header)
temp_img.to_filename(temp_img_file)
results.residuals = butterworth(results.residuals, sampling_rate=Fs, low_pass=low_pass, high_pass=None)
print('Low-pass Filter Applied: < ' + str(low_pass) + ' Hz')
# add mean back into data
clean_data = results.residuals.T + np.reshape(data_mean, (Nvox, 1)) # add mean back into residuals
# save out new data file
print('Saving output file...')
clean_data = np.reshape(clean_data, img.shape).astype('float32')
new_img = nb.Nifti1Image(clean_data, img.affine, header=img.header)
new_img.to_filename(save_img_file)
######### generate Rsquared map for confounds only
if hp_filter:
# first remove low-frequency information from data
hp_cols.append(constant)
model_first = regression.OLSModel(df[hp_cols].values)
results_first = model_first.fit(data.T)
results_first_resid = copy.deepcopy(results_first.residuals)
del results_first, model_first
# compute sst - borrowed from matlab
sst = np.square(np.linalg.norm(results_first_resid -
np.mean(results_first_resid, axis=0), axis=0))
# now regress out 'true' confounds to estimate their Rsquared
nr_cols = [col for col in df.columns if 'drift' not in col]
model_second = regression.OLSModel(df[nr_cols].values)
results_second = model_second.fit(results_first_resid)
# compute sse - borrowed from matlab
sse = np.square(np.linalg.norm(results_second.residuals, axis=0))
del results_second, model_second, results_first_resid
elif not hp_filter:
# compute sst - borrowed from matlab
sst = np.square(np.linalg.norm(data.T -
np.mean(data.T, axis=0), axis=0))
# compute sse - borrowed from matlab
sse = np.square(np.linalg.norm(results_orig_resid, axis=0))
del results_orig_resid
# compute rsquared of nuisance regressors
zero_idx = np.logical_and(sst == 0, sse == 0)
sse[zero_idx] = 1
sst[zero_idx] = 1 # would be NaNs - become rsquared = 0
rsquare = 1 - np.true_divide(sse, sst)
rsquare[np.isnan(rsquare)] = 0
######### Visualizing DM & outputs
fontsize = 12
fontsize_title = 14
def_img_size = 8
if not out_figure_path:
out_figure_path = save_img_file[0:save_img_file.find('.')] + '_figures'
if not os.path.isdir(out_figure_path):
os.mkdir(out_figure_path)
png_append = '_' + img_name[0:img_name.find('.')] + '.png'
print('Output directory: ' + out_figure_path)
# DM corr matrix
cm = df[df.columns[0:-1]].corr()
curr_sz = copy.deepcopy(def_img_size)
if cm.shape[0] > def_img_size:
curr_sz = curr_sz + ((cm.shape[0] - curr_sz) * .3)
mtx_scale = curr_sz * 100
mask = np.zeros_like(cm, dtype=np.bool)
mask[np.triu_indices_from(mask)] = True
fig, ax = plt.subplots(figsize=(curr_sz, curr_sz))
cmap = sns.diverging_palette(220, 10, as_cmap=True)
sns.heatmap(cm, mask=mask, cmap=cmap, center=0, vmax=cm[cm < 1].max().max(), vmin=cm[cm < 1].min().min(),
square=True, linewidths=.5, cbar_kws={"shrink": .6})
ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize)
ax.set_yticklabels(cm.columns.tolist(), rotation=-30, va='bottom', fontsize=fontsize)
ax.set_title('Nuisance Corr. Matrix', fontsize=fontsize_title)
plt.tight_layout()
file_corr_matrix = 'Corr_matrix_regressors' + png_append
fig.savefig(pjoin(out_figure_path, file_corr_matrix))
plt.close(fig)
del fig, ax
# DM of Nuisance Regressors (all)
tr_label = 'TR (Volume #)'
fig, ax = plt.subplots(figsize=(curr_sz - 4.1, def_img_size))
x_scale_html = ((curr_sz - 4.1) / def_img_size) * 890
plotting.plot_design_matrix(df, ax=ax)
ax.set_title('Nuisance Design Matrix', fontsize=fontsize_title)
ax.set_xticklabels(ax.get_xticklabels(), rotation=60, ha='right', fontsize=fontsize)
ax.set_yticklabels(ax.get_yticklabels(), fontsize=fontsize)
ax.set_ylabel(tr_label, fontsize=fontsize)
plt.tight_layout()
file_design_matrix = 'Design_matrix' + png_append
fig.savefig(pjoin(out_figure_path, file_design_matrix))
plt.close(fig)
del fig, ax
# FD timeseries plot
FD = 'FD'
poss_names = ['FramewiseDisplacement', FD, 'framewisedisplacement', 'fd', 'framewise_displacement']
fd_idx = [df_orig.columns.__contains__(i) for i in poss_names]
if np.sum(fd_idx) > 0:
FD_name = np.array(poss_names)[fd_idx][0] #poss_names[fd_idx == True]
if sum(df_orig[FD_name].isnull()) > 0:
df_orig[FD_name] = df_orig[FD_name].fillna(np.mean(df_orig[FD_name]))
y = df_orig[FD_name].values
Nremove = []
sc_idx = []
for thr_idx, thr in enumerate(FD_thr):
idx = y >= thr
sc_idx.append(copy.deepcopy(idx))
for iidx in np.where(idx)[0]:
for buffer in sc_range:
curr_idx = iidx + buffer
if curr_idx >= 0 and curr_idx <= len(idx):
sc_idx[thr_idx][curr_idx] = True
Nremove.append(np.sum(sc_idx[thr_idx]))
Nplots = len(FD_thr)
sns.set(font_scale=1.5)
sns.set_style('ticks')
fig, axes = plt.subplots(Nplots, 1, figsize=(def_img_size * 1.5, def_img_size / 2), squeeze=False)
sns.despine()
bound = .4
fd_mean = np.mean(y)
for curr in np.arange(0, Nplots):
axes[curr, 0].plot(y)
axes[curr, 0].plot((-bound, Ntrs + bound), FD_thr[curr] * np.ones((1, 2))[0], '--', color='black')
axes[curr, 0].scatter(np.arange(0, Ntrs), y, s=20)
if Nremove[curr] > 0:
info = scipy.ndimage.measurements.label(sc_idx[curr])
for cluster in np.arange(1, info[1] + 1):
temp = np.where(info[0] == cluster)[0]
axes[curr, 0].axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red')
axes[curr, 0].set_ylabel('Framewise Disp. (' + FD + ')')
axes[curr, 0].set_title(FD + ': ' + str(100 * Nremove[curr] / Ntrs)[0:4]
+ '% of scan (' + str(Nremove[curr]) + ' volumes) would be scrubbed (FD thr.= ' +
str(FD_thr[curr]) + ')')
plt.text(Ntrs + 1, FD_thr[curr] - .01, FD + ' = ' + str(FD_thr[curr]), fontsize=fontsize)
plt.text(Ntrs, fd_mean - .01, 'avg = ' + str(fd_mean), fontsize=fontsize)
axes[curr, 0].set_xlim((-bound, Ntrs + 8))
plt.tight_layout()
axes[curr, 0].set_xlabel(tr_label)
file_fd_plot = FD + '_timeseries' + png_append
fig.savefig(pjoin(out_figure_path, file_fd_plot))
plt.close(fig)
del fig, axes
print(FD + ' timeseries plot saved')
else:
print(FD + ' not found: ' + FD + ' timeseries not plotted')
file_fd_plot = None
# Carpet and DVARS plots - before & after nuisance regression
# need to create mask file to input to DVARS function
mask_file = pjoin(out_figure_path, 'mask_temp.nii.gz')
nifti_masker = NiftiMasker(mask_strategy='epi', standardize=False)
nifti_masker.fit(img)
nifti_masker.mask_img_.to_filename(mask_file)
# create 2 or 3 carpet plots, depending on if LP filter is also applied
Ncarpet = 2
total_sz = int(16)
carpet_scale = 840
y_labels = ['Input (voxels)', 'Output \'cleaned\'']
imgs = [img, new_img]
img_files = [img_file, save_img_file]
color = ['red', 'salmon']
labels = ['input', 'cleaned']
if lp_filter:
Ncarpet = 3
total_sz = int(20)
carpet_scale = carpet_scale * (9/8)
y_labels = ['Input', 'Clean Pre-LP', 'Clean LP']
imgs.insert(1, temp_img)
img_files.insert(1, temp_img_file)
color.insert(1, 'firebrick')
labels.insert(1, 'clean pre-LP')
labels[-1] = 'clean LP'
dvars = []
print('Computing dvars...')
for in_file in img_files:
temp = nac.compute_dvars(in_file=in_file, in_mask=mask_file)[1]
dvars.append(np.hstack((temp.mean(), temp)))
del temp
small_sz = 2
fig = plt.figure(figsize=(def_img_size * 1.5, def_img_size + ((Ncarpet - 2) * 1)))
row_used = 0
if np.sum(fd_idx) > 0: # if FD data is available
row_used = row_used + small_sz
ax0 = plt.subplot2grid((total_sz, 1), (0, 0), rowspan=small_sz)
ax0.plot(y)
ax0.scatter(np.arange(0, Ntrs), y, s=10)
curr = 0
if Nremove[curr] > 0:
info = scipy.ndimage.measurements.label(sc_idx[curr])
for cluster in np.arange(1, info[1] + 1):
temp = np.where(info[0] == cluster)[0]
ax0.axvspan(temp.min() - bound, temp.max() + bound, alpha=.5, color='red')
ax0.set_ylabel(FD)
for side in ["top", "right", "bottom"]:
ax0.spines[side].set_color('none')
ax0.spines[side].set_visible(False)
ax0.set_xticks([])
ax0.set_xlim((-.5, Ntrs - .5))
ax0.spines["left"].set_position(('outward', 10))
ax_d = plt.subplot2grid((total_sz, 1), (row_used, 0), rowspan=small_sz)
for iplot in np.arange(len(dvars)):
ax_d.plot(dvars[iplot], color=color[iplot], label=labels[iplot])
ax_d.set_ylabel('DVARS')
for side in ["top", "right", "bottom"]:
ax_d.spines[side].set_color('none')
ax_d.spines[side].set_visible(False)
ax_d.set_xticks([])
ax_d.set_xlim((-.5, Ntrs - .5))
ax_d.spines["left"].set_position(('outward', 10))
ax_d.legend(fontsize=fontsize - 2)
row_used = row_used + small_sz
st = 0
carpet_each = int((total_sz - row_used) / Ncarpet)
for idx, img_curr in enumerate(imgs):
ax_curr = plt.subplot2grid((total_sz, 1), (row_used + st, 0), rowspan=carpet_each)
fig = plotting.plot_carpet(img_curr, figure=fig, axes=ax_curr)
ax_curr.set_ylabel(y_labels[idx])
for side in ["bottom", "left"]:
ax_curr.spines[side].set_position(('outward', 10))
if idx < len(imgs)-1:
ax_curr.spines["bottom"].set_visible(False)
ax_curr.set_xticklabels('')
ax_curr.set_xlabel('')
st = st + carpet_each
file_carpet_plot = 'Carpet_plots' + png_append
fig.savefig(pjoin(out_figure_path, file_carpet_plot))
plt.close()
del fig, ax0, ax_curr, ax_d, dvars
os.remove(mask_file)
print('Carpet/DVARS plots saved')
if lp_filter:
os.remove(temp_img_file)
del temp_img
# Display T-stat maps for nuisance regressors
# create mean img
img_size = (img.shape[0], img.shape[1], img.shape[2])
mean_img = nb.Nifti1Image(np.reshape(data_mean, img_size), img.affine)
mx = []
for idx, col in enumerate(df.columns):
if not 'drift' in col and not constant in col:
con_vector = np.zeros((1, df.shape[1]))
con_vector[0, idx] = 1
con = results.Tcontrast(con_vector)
mx.append(np.max(np.absolute([con.t.min(), con.t.max()])))
mx = .8 * np.max(mx)
t_png = 'Tstat_'
file_tstat = []
for idx, col in enumerate(df.columns):
if not 'drift' in col and not constant in col:
con_vector = np.zeros((1, df.shape[1]))
con_vector[0, idx] = 1
con = results.Tcontrast(con_vector)
m_img = nb.Nifti1Image(np.reshape(con, img_size), img.affine)
title_str = col + ' Tstat'
fig = plotting.plot_stat_map(m_img, mean_img, threshold=3, colorbar=True, display_mode='z', vmax=mx,
title=title_str,
cut_coords=7)
file_temp = t_png + col + png_append
fig.savefig(pjoin(out_figure_path, file_temp))
file_tstat.append({'name': col, 'file': file_temp})
plt.close()
del fig, file_temp
print(title_str + ' map saved')
# Display R-sq map for nuisance regressors
m_img = nb.Nifti1Image(np.reshape(rsquare, img_size), img.affine)
title_str = 'Nuisance Rsq'
mx = .95 * rsquare.max()
fig = plotting.plot_stat_map(m_img, mean_img, threshold=.2, colorbar=True, display_mode='z', vmax=mx,
title=title_str,
cut_coords=7)
file_rsq_map = 'Rsquared' + png_append
fig.savefig(pjoin(out_figure_path, file_rsq_map))
plt.close()
del fig
print(title_str + ' map saved')
######### html report
templateLoader = jinja2.FileSystemLoader(searchpath="/")
templateEnv = jinja2.Environment(loader=templateLoader)
templateVars = {"img_file": img_file,
"save_img_file": save_img_file,
"Ntrs": Ntrs,
"tsv_file": tsv_file,
"col_names": col_names,
"hp_filter": hp_filter,
"lp_filter": lp_filter,
"file_design_matrix": file_design_matrix,
"file_corr_matrix": file_corr_matrix,
"file_fd_plot": file_fd_plot,
"file_rsq_map": file_rsq_map,
"file_tstat": file_tstat,
"x_scale": x_scale_html,
"mtx_scale": mtx_scale,
"file_carpet_plot": file_carpet_plot,
"carpet_scale": carpet_scale
}
TEMPLATE_FILE = pjoin(os.getcwd(), "report_template.html")
template = templateEnv.get_template(TEMPLATE_FILE)
outputText = template.render(templateVars)
html_file = pjoin(out_figure_path, img_name[0:img_name.find('.')] + '.html')
with open(html_file, "w") as f:
f.write(outputText)
print('')
print('HTML report: ' + html_file)
return new_img
denoise(img_file, tsv_file, out_path, col_names, hp_filter, lp_filter, out_figure_path)