-
Notifications
You must be signed in to change notification settings - Fork 0
/
predict.py
executable file
·119 lines (93 loc) · 4.31 KB
/
predict.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import argparse
import logging
import os
import numpy as np
import torch
import torch.nn.functional as F
from PIL import Image
from torchvision import transforms
from utils.data_loading import BasicDataset
from unet import UNet
from utils.utils import plot_img_and_mask
def predict_img(net,
full_img,
device,
scale_factor=1,
out_threshold=0.5):
net.eval()
img = torch.from_numpy(BasicDataset.preprocess(full_img, scale_factor, is_mask=False))
img = img.unsqueeze(0)
img = img.to(device=device, dtype=torch.float32)
with torch.no_grad():
output = net(img)
if net.n_classes > 1:
probs = F.softmax(output, dim=1)[0]
else:
probs = torch.sigmoid(output)[0]
tf = transforms.Compose([
transforms.ToPILImage(),
transforms.Resize((full_img.size[1], full_img.size[0])),
transforms.ToTensor()
])
full_mask = tf(probs.cpu()).squeeze()
if net.n_classes == 1:
return (full_mask > out_threshold).numpy()
else:
return F.one_hot(full_mask.argmax(dim=0), net.n_classes).permute(2, 0, 1).numpy()
def get_args():
parser = argparse.ArgumentParser(description='Predict masks from input images')
parser.add_argument('--model', '-m', default='MODEL.pth', metavar='FILE',
help='Specify the file in which the model is stored')
parser.add_argument('--input', '-i', metavar='INPUT', nargs='+', help='Filenames of input images', required=True)
parser.add_argument('--output', '-o', metavar='INPUT', nargs='+', help='Filenames of output images')
parser.add_argument('--viz', '-v', action='store_true',
help='Visualize the images as they are processed')
parser.add_argument('--no-save', '-n', action='store_true', help='Do not save the output masks')
""" parser.add_argument('--mask-threshold', '-t', type=float, default=0.5,
help='Minimum probability value to consider a mask pixel white') """
parser.add_argument('--mask-threshold', '-t', type=float, default=0.25,
help='Minimum probability value to consider a mask pixel white')
""" parser.add_argument('--scale', '-s', type=float, default=0.5,
help='Scale factor for the input images') """
parser.add_argument('--scale', '-s', type=float, default=0.25,
help='Scale factor for the input images')
return parser.parse_args()
def get_output_filenames(args):
def _generate_name(fn):
split = os.path.splitext(fn)
return "{}_OUT{}".format(split[0],split[1])
return args.output or list(map(_generate_name, args.input))
def mask_to_image(mask: np.ndarray):
if mask.ndim == 2:
return Image.fromarray((mask * 255).astype(np.uint8))
elif mask.ndim == 3:
return Image.fromarray((np.argmax(mask, axis=0) * 255 / mask.shape[0]).astype(np.uint8))
if __name__ == '__main__':
args = get_args()
in_files = args.input
out_files = get_output_filenames(args)
net = UNet(n_channels=3, n_classes=2)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
logging.info('Loading model {}'.format(args.model))
logging.info('Using device {}'.format(device))
net.to(device=device)
net.load_state_dict(torch.load(args.model, map_location=device))
logging.info('Model loaded!')
for i, filename in enumerate(in_files):
#logging.info(f'\nPredicting image {filename} ...')
logging.info('\nPredicting image {} ...'.format(filename))
img = Image.open(filename)
mask = predict_img(net=net,
full_img=img,
scale_factor=args.scale,
out_threshold=args.mask_threshold,
device=device)
if not args.no_save:
out_filename = out_files[i]
result = mask_to_image(mask)
result.save(out_filename)
logging.info('Mask saved to {}'.format(out_filename))
if args.viz:
#logging.info(f'Visualizing results for image {filename}, close to continue...')
logging.info('Visualizing results for image {},close to continue...'.format(filename))
plot_img_and_mask(img, mask)