-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxamba.py
1134 lines (962 loc) · 52.3 KB
/
xamba.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
# coding=utf-8
# Copyright 2024 state-spaces/mamba2 org and HuggingFace Inc. team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""PyTorch MAMBA2 model."""
import math
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.utils.checkpoint
from torch import nn
from torch.nn import CrossEntropyLoss
from ...activations import ACT2FN
from ...generation import GenerationMixin
from ...modeling_utils import PreTrainedModel
from ...utils import (
ModelOutput,
add_code_sample_docstrings,
add_start_docstrings,
add_start_docstrings_to_model_forward,
logging,
)
from ...utils.import_utils import is_causal_conv1d_available, is_mamba_2_ssm_available
from .configuration_mamba2 import Mamba2Config
logger = logging.get_logger(__name__)
if is_mamba_2_ssm_available():
from mamba_ssm.ops.triton.selective_state_update import selective_state_update
from mamba_ssm.ops.triton.ssd_combined import mamba_chunk_scan_combined, mamba_split_conv1d_scan_combined
else:
selective_state_update = None
if is_causal_conv1d_available():
from causal_conv1d import causal_conv1d_fn, causal_conv1d_update
else:
causal_conv1d_update, causal_conv1d_fn = None, None
is_fast_path_available = all((selective_state_update, causal_conv1d_fn, causal_conv1d_update))
_CHECKPOINT_FOR_DOC = "mistralai/mamba-codestral-7B-v0.1"
_CONFIG_FOR_DOC = "Mamba2Config"
# Helper methods for segment sum computation
def pad_tensor_by_size(input_tensor: torch.Tensor, pad_size: int):
"""
Padding x tensor with `pad_size` on the seq_len dim (dim=1)
Assumes that we only have tensors of either size 4 or 3
"""
pad_shape = (0, 0, 0, 0, 0, pad_size, 0, 0) if len(input_tensor.shape) == 4 else (0, 0, 0, pad_size, 0, 0)
return torch.nn.functional.pad(input_tensor, pad_shape, mode="constant", value=0)
def reshape_into_chunks(input_tensor, pad_size, chunk_size):
"""
Padding input_tensor with `pad_size` on the seq_len dim (dim=1) and
simultaneously splitting it into chunk sequences.
Assumes that we only have tensors of either size 4 or 3
"""
# [bsz, seq_len, ...] -> [bsz, seq_len multiple of chunk_size, ...]
input_tensor = pad_tensor_by_size(input_tensor, pad_size)
if len(input_tensor.shape) == 3:
# [bsz, seq_len multiple of chunk_size, num_heads] -> [bsz, -1, chunk_size, num_heads]
return input_tensor.reshape(input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2])
else:
# [bsz, seq_len multiple of chunk_size, num_heads, head_dim or state_size] -> [bsz, -1, chunk_size, num_heads, head_dim or state_size]
return input_tensor.reshape(
input_tensor.shape[0], -1, chunk_size, input_tensor.shape[2], input_tensor.shape[3]
)
def segment_sum(input_tensor):
"""
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
"""
chunk_size = input_tensor.size(-1)
# 1. expand input tensor to have an additional dimension and repeat along that dimension
# [..., chunk_size] -> [..., chunk_size, chunk_size]
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
# 2. create a lower triangular mask with the diagonal set to 0 to 0 out elements above diag
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
input_tensor = input_tensor.masked_fill(~mask, 0)
# 3. compute actual cumsum
tensor_segsum = torch.cumsum(input_tensor, dim=-2)
# 4. apply mask to keep only the lower triangular part of the cumulative sum result (incl diagonal this time)
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
return tensor_segsum
def alternative_cumsum(input_tensor):
"""
Alternative implementation of torch.cumsum using torch.matmul.
"""
# Extract input tensor shape
batch_size, num_groups, _, seq_len, _ = input_tensor.size()
# Create a cumulative sum mask (lower triangular matrix)
cumsum_mask = torch.tril(torch.ones(seq_len, seq_len, device=input_tensor.device))
# Flatten the input along the last two dimensions
flat_input = input_tensor.view(-1, seq_len, seq_len) # Shape: [batch_size * num_groups, seq_len, seq_len]
# Perform matrix multiplication to compute cumulative sum
tensor_cumsum = torch.matmul(cumsum_mask, flat_input) # Shape: [batch_size * num_groups, seq_len, seq_len]
# Reshape back to original dimensions
tensor_cumsum = tensor_cumsum.view(batch_size, num_groups, 1, seq_len, seq_len)
return tensor_cumsum
################################# CumBA implementation #################################
def segment_sum_modified(input_tensor):
"""
More stable segment sum calculation. Uses cumulative sums and masking instead of direct subtractions.
"""
chunk_size = input_tensor.size(-1)
print(chunk_size)
# Expand input tensor to have an additional dimension and repeat along that dimension
input_tensor = input_tensor[..., None].expand(*input_tensor.size(), chunk_size)
# Create a lower triangular mask with the diagonal set to 0
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=-1)
input_tensor = input_tensor.masked_fill(~mask, 0)
# Compute actual cumsum
tensor_segsum = alternative_cumsum(input_tensor)
# Apply mask to keep only the lower triangular part of the cumulative sum result (including diagonal)
mask = torch.tril(torch.ones(chunk_size, chunk_size, device=input_tensor.device, dtype=torch.bool), diagonal=0)
tensor_segsum = tensor_segsum.masked_fill(~mask, -torch.inf)
return tensor_segsum
################################# CumBA implementation #################################
class Mamba2Cache:
"""
Arguments:
config: Mamba2Config
batch_size: int
dtype: torch.dtype
device: torch.device
Attributes:
seqlen_offset: int
dtype: torch.dtype
conv_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, conv_kernel_size]
ssm_states: Dict[int, torch.Tensor] # layer_idx -> [batch_size, intermediate_size, ssm_state_size]
"""
def __init__(
self, config: Mamba2Config, batch_size: int, dtype: torch.dtype = torch.float16, device: Optional[str] = None
):
self.seqlen_offset = 0
self.dtype = dtype
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = int(config.expand * config.hidden_size)
self.conv_states = {
i: torch.zeros(
batch_size,
self.intermediate_size + 2 * config.n_groups * config.state_size,
self.conv_kernel_size,
device=device,
dtype=dtype,
)
for i in range(config.num_hidden_layers)
}
self.ssm_states = {
i: torch.zeros(
batch_size, config.num_heads, config.head_dim, config.state_size, device=device, dtype=dtype
)
for i in range(config.num_hidden_layers)
}
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
def update_conv_state(
self, layer_idx: int, new_conv_state: torch.Tensor, cache_position: torch.LongTensor
) -> torch.Tensor:
conv_state = self.conv_states[layer_idx]
cache_position = cache_position.clamp(0, self.conv_kernel_size - 1)
conv_state = conv_state.roll(shifts=-1, dims=-1)
conv_state[:, :, cache_position] = new_conv_state.to(conv_state.device)
self.conv_states[layer_idx].zero_()
self.conv_states[layer_idx] += conv_state
return self.conv_states[layer_idx]
def reset(self):
self.conv_states.zero_()
self.ssm_states.zero_()
class MambaRMSNormGated(torch.nn.Module):
def __init__(self, hidden_size, eps=1e-6):
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states, gate=None):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
if gate is not None:
hidden_states = hidden_states * nn.functional.silu(gate.to(torch.float32))
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Mamba2Mixer(nn.Module):
"""
Compute ∆, A, B, C, and D the state space parameters and compute the `contextualized_states`.
A, D are input independent (see Mamba paper [1] Section 3.5.2 "Interpretation of A" for why A isn't selective)
∆, B, C are input-dependent (this is a key difference between Mamba and the linear time invariant S4,
and is why Mamba is called **selective** state spaces)
"""
def __init__(self, config: Mamba2Config, layer_idx: int):
super().__init__()
self.num_heads = config.num_heads
self.hidden_size = config.hidden_size
self.ssm_state_size = config.state_size
self.conv_kernel_size = config.conv_kernel
self.intermediate_size = int(config.expand * self.hidden_size)
self.time_step_rank = int(config.time_step_rank)
self.layer_idx = layer_idx
self.use_conv_bias = config.use_conv_bias
self.activation = config.hidden_act
self.act = ACT2FN[config.hidden_act]
self.layer_norm_epsilon = config.layer_norm_epsilon
self.rms_norm = config.rms_norm
self.n_groups = config.n_groups
self.head_dim = config.head_dim
self.chunk_size = config.chunk_size
self.time_step_limit = config.time_step_limit
self.time_step_min = config.time_step_min
self.time_step_max = config.time_step_max
self.conv_dim = self.intermediate_size + 2 * self.n_groups * self.ssm_state_size
self.conv1d = nn.Conv1d(
in_channels=self.conv_dim,
out_channels=self.conv_dim,
bias=config.use_conv_bias,
kernel_size=config.conv_kernel,
groups=self.conv_dim,
padding=config.conv_kernel - 1,
)
# projection of the input hidden states
projection_size = self.intermediate_size + self.conv_dim + self.num_heads
self.in_proj = nn.Linear(
self.hidden_size,
projection_size,
bias=config.use_bias,
)
# selective projection used to make dt, B and C input dependant
# time step projection (discretization)
# instantiate once and copy inv_dt in init_weights of PretrainedModel
self.dt_bias = nn.Parameter(torch.ones(self.num_heads))
# S4D real initialization. These are not discretized!
# The core is to load them, compute the discrete states, then write the updated state. Keeps the memory bounded
A = torch.arange(1, self.num_heads + 1)
self.A_log = nn.Parameter(torch.log(A))
self.A_log._no_weight_decay = True
self.norm = MambaRMSNormGated(self.intermediate_size, eps=self.layer_norm_epsilon)
self.D = nn.Parameter(torch.ones(self.num_heads))
self.D._no_weight_decay = True
self.out_proj = nn.Linear(self.intermediate_size, self.hidden_size, bias=config.use_bias)
self.use_bias = config.use_bias
if not is_fast_path_available:
logger.warning_once(
"The fast path is not available because on of `(selective_state_update, causal_conv1d_fn, causal_conv1d_update)`"
" is None. Falling back to the naive implementation. To install follow https://github.com/state-spaces/mamba/#installation and"
" https://github.com/Dao-AILab/causal-conv1d"
)
def cuda_kernels_forward(
self,
hidden_states: torch.Tensor,
cache_params: Optional[Mamba2Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
# set up dimensions for reshapes later
batch_size, seq_len, _ = hidden_states.shape
groups_time_state_size = self.n_groups * self.ssm_state_size
d_to_remove = 2 * self.intermediate_size + 2 * self.n_groups * self.ssm_state_size + self.num_heads
# getting projected states from cache if it exists
if cache_params is not None and cache_params.seqlen_offset > 0:
in_projected_states = self.in_proj(hidden_states.squeeze(1)) # (B 2D)
d_mlp = (in_projected_states.shape[-1] - d_to_remove) // 2
split_projection_dim = [d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads]
_, _, gate, hidden_states_B_C, dt = torch.split(in_projected_states, split_projection_dim, dim=-1)
hidden_states_B_C = causal_conv1d_update(
hidden_states_B_C,
cache_params.conv_states[self.layer_idx],
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.activation,
)
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
dim=-1,
)
A = -torch.exp(self.A_log.float()) # (nheads,)
A = A[:, None, ...][:, :, None].expand(-1, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
dt = dt[:, :, None].expand(-1, -1, self.head_dim)
dt_bias = self.dt_bias[:, None, ...].expand(-1, self.head_dim)
D = self.D[:, None, ...].expand(-1, self.head_dim)
B = B.view(batch_size, self.n_groups, B.shape[1] // self.n_groups)
C = C.view(batch_size, self.n_groups, C.shape[1] // self.n_groups)
hidden_states_reshaped = hidden_states.view(batch_size, self.num_heads, self.head_dim)
hidden_states = selective_state_update(
cache_params.ssm_states[self.layer_idx],
hidden_states_reshaped,
dt,
A,
B,
C,
D,
z=None,
dt_bias=dt_bias,
dt_softplus=True,
)
hidden_states = hidden_states.view(batch_size, self.num_heads * self.head_dim)
hidden_states = self.norm(hidden_states, gate)
out = self.out_proj(hidden_states)[:, None, ...]
# if no cache is found, calling the kernel
else:
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
# 1. Gated MLP's linear projection
projected_states = self.in_proj(hidden_states)
A = -torch.exp(self.A_log.float()) # (num_heads) or (intermediate_size, state_size)
dt_limit_kwargs = {} if self.time_step_limit == (0.0, float("inf")) else {"dt_limit": self.time_step_limit}
if self.training and cache_params is None:
out, ssm_state = mamba_split_conv1d_scan_combined(
projected_states,
self.conv1d.weight.squeeze(1),
self.conv1d.bias,
self.dt_bias,
A,
D=self.D,
chunk_size=self.chunk_size,
seq_idx=None, # was seq_idx
activation=self.activation,
rmsnorm_weight=self.norm.weight,
rmsnorm_eps=self.norm.variance_epsilon,
outproj_weight=self.out_proj.weight,
outproj_bias=self.out_proj.bias,
headdim=self.head_dim,
ngroups=self.n_groups,
norm_before_gate=False,
return_final_states=True,
**dt_limit_kwargs,
)
else:
gate, hidden_states_B_C, time_step = torch.split(
projected_states,
[self.intermediate_size, self.conv_dim, self.num_heads],
dim=-1,
)
# 1D Convolution
if causal_conv1d_fn is None or self.activation not in ["silu", "swish"]:
hidden_states_B_C = self.act(
self.conv1d(hidden_states_B_C.transpose(1, 2)).transpose(1, 2)[:, :seq_len]
) # (B, L, self.d_inner + 2 * ngroups * d_state)
else:
hidden_states_B_C = causal_conv1d_fn(
x=hidden_states_B_C.transpose(1, 2),
weight=self.conv1d.weight.squeeze(1),
bias=self.conv1d.bias,
activation=self.activation,
).transpose(1, 2)[:, :seq_len]
hidden_states, B, C = torch.split(
hidden_states_B_C,
[self.intermediate_size, groups_time_state_size, groups_time_state_size],
dim=-1,
)
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
dtype = hidden_states.dtype
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
scan_output, ssm_state = mamba_chunk_scan_combined(
hidden_states.view(batch_size, seq_len, -1, self.head_dim),
time_step,
A,
B.view(batch_size, seq_len, self.n_groups, -1),
C.view(batch_size, seq_len, self.n_groups, -1),
chunk_size=self.chunk_size,
D=self.D,
z=None,
seq_idx=None,
return_final_states=True,
dt_bias=self.dt_bias,
dt_softplus=True,
**dt_limit_kwargs,
)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = scan_output.view(batch_size, seq_len, -1)
# Multiply "gate" branch and apply extra normalization layer
scan_output = self.norm(scan_output, gate)
out = self.out_proj(scan_output)
return out
# fmt: off
def torch_forward(self, input_states, cache_params: Optional[Mamba2Cache]=None, cache_position:Optional[torch.LongTensor]=None, attention_mask: Optional[torch.Tensor]=None):
batch_size, seq_len, _ = input_states.shape
dtype = input_states.dtype
# Gated MLP's linear projection
projected_states = self.in_proj(input_states.squeeze(1))
d_mlp = (projected_states.shape[-1] - 2 * self.intermediate_size - 2 * self.n_groups * self.ssm_state_size- self.num_heads) // 2
_, _, gate, hidden_states, dt = projected_states.split(
[d_mlp, d_mlp, self.intermediate_size, self.conv_dim, self.num_heads], dim=-1
)
# Convolution sequence transformation
if cache_params is not None:
ssm_state = cache_params.ssm_states[self.layer_idx].clone()
ssm_state = ssm_state.to(hidden_states.device)
if cache_params.seqlen_offset > 0:
conv_state = cache_params.conv_states[self.layer_idx] # [batch, intermediate_size, conv_kernel_size]
conv_state = torch.roll(conv_state, shifts=-1, dims=-1)
# handle batched generation - states are copied through
conv_state[:, :, -1] = hidden_states[:, 0, :] if hidden_states.ndim == 3 else hidden_states
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = torch.sum(conv_state.to(projected_states.device) * self.conv1d.weight[:, 0, :], dim=-1)
if self.use_conv_bias:
hidden_states += self.conv1d.bias
hidden_states = self.act(hidden_states).to(dtype)[:, None, ...] # [batch, 1, intermediate_size] : decoding
else:
hidden_states = hidden_states.transpose(1,2)
conv_state = nn.functional.pad(
hidden_states,
(self.conv_kernel_size - hidden_states.shape[-1], 0)
)
cache_params.conv_states[self.layer_idx].copy_(conv_state)
hidden_states = self.act(self.conv1d(hidden_states).transpose(1,2))[:, :seq_len, :] # [batch, intermediate_size, seq_len]
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
dtype = hidden_states.dtype
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
else:
ssm_state = torch.zeros(
(batch_size, self.num_heads, self.head_dim, self.ssm_state_size),
device=hidden_states.device, dtype=dtype
)
hidden_states = self.act(self.conv1d(hidden_states.transpose(1, 2))[..., :seq_len].transpose(1, 2))
hidden_states, B, C = torch.split(hidden_states, [self.intermediate_size, self.n_groups * self.ssm_state_size, self.n_groups * self.ssm_state_size], dim=-1)
A = -torch.exp(self.A_log.float()) # [num_heads]
if cache_params is not None and cache_params.seqlen_offset > 0:
# Note: there is no need to pad parameter matrices here, as there is just one new token
# for batched generation
dt = dt[:, None, ...] if dt.ndim == 2 else dt[:, 0, :][:, None, ...]
dt = dt.transpose(1, 2).expand(batch_size, dt.shape[-1], self.head_dim)
# [num_heads] -> [num_heads, head_dim]
dt_bias = self.dt_bias[..., None].expand(self.dt_bias.shape[0], self.head_dim)
dt = torch.nn.functional.softplus(dt + dt_bias.to(dt.dtype))
dt = torch.clamp(dt, self.time_step_min) #, self.time_step_max)
A = A[..., None, None].expand(self.num_heads, self.head_dim, self.ssm_state_size).to(dtype=torch.float32)
# [bsz, num_heads, head_dim, state_size]
dA = torch.exp(dt[..., None] * A)
# Discretize B
# [bsz, n_groups * state_size] -> [bsz, n_groups, 1, state_size] ->
# -> [bsz, n_groups, group to head repetition factor, state_size] -> [bsz, num_heads, state_size]
B = B.reshape(batch_size, self.n_groups, -1)[..., None, :]
B = B.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, B.shape[-1]).contiguous()
B = B.reshape(batch_size, -1, B.shape[-1])
# [bsz, num_heads, head_dim, state_size]
dB = dt[..., None] * B[..., None, :]
# Discretize x into dB
# [bsz, intermediate_size] -> [bsz, num_heads, head_dim]
hidden_states = hidden_states.reshape(batch_size, -1, self.head_dim)
dBx = dB * hidden_states[..., None]
# State calculation
cache_params.ssm_states[self.layer_idx].copy_(
cache_params.ssm_states[self.layer_idx] * dA + dBx
)
# Subsequent output
# [bsz, n_groups * state_size] -> [bsz, num_heads, state_size]
C = C.reshape(batch_size, self.n_groups, -1)[..., None, :]
C = C.expand(batch_size, self.n_groups, self.num_heads // self.n_groups, C.shape[-1]).contiguous()
C = C.reshape(batch_size, -1, C.shape[-1])
# [bsz, num_heads, head_dim]
ssm_states = cache_params.ssm_states[self.layer_idx].to(C.dtype) # Shape: [b, h, d, n]
# Reshape ssm_states to merge the first two dimensions
ssm_states_reshaped = ssm_states.view(batch_size * self.num_heads, self.head_dim, self.ssm_state_size) # Shape: [b*h, d, n]
C_reshaped = C.view(batch_size * self.num_heads, self.ssm_state_size, 1) # Shape: [b*h, n, 1]
y = torch.bmm(ssm_states_reshaped, C_reshaped)
y = y.view(batch_size, self.num_heads, self.head_dim)
# D skip connection
# [num_heads] -> [num_heads, head_dim]
D = self.D[..., None].expand(self.D.shape[0], self.head_dim)
y = (y + hidden_states * D).to(y.dtype)
# [bsz, num_heads, head_dim] -> [bsz, 1, intermediate_size]
y = y.reshape(batch_size, -1)[:, None, ...]
else:
# begin ssd naive implementation without einsums
# dt = nn.functional.softplus(dt + self.dt_bias)
dt = nn.functional.relu(dt + self.dt_bias) # XAMBA: SoftPlus to ReLU (ActiBA)
dt = torch.clamp(dt, self.time_step_min)
hidden_states = hidden_states.reshape(batch_size, seq_len, -1, self.head_dim).float()
B = B.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
C = C.reshape(batch_size, seq_len, -1, self.ssm_state_size).float()
B = B.repeat(1, 1, self.num_heads // self.n_groups, 1)
C = C.repeat(1, 1, self.num_heads // self.n_groups, 1)
pad_size = (self.chunk_size - seq_len % self.chunk_size) % self.chunk_size
D_residual = self.D[..., None] * pad_tensor_by_size(hidden_states, pad_size)
# Discretize x and A
hidden_states = hidden_states * dt[..., None]
A = A.to(hidden_states.dtype) * dt
# Rearrange into blocks/chunks
hidden_states, A, B, C = [reshape_into_chunks(t, pad_size, self.chunk_size) for t in (hidden_states, A, B, C)]
# [bsz, -1, chunk_size, num_heads] -> [bsz, num_heads, -1, chunk_size]
A = A.permute(0, 3, 1, 2)
A_cumsum = torch.cumsum(A, dim=-1)
# 1. Compute the output for each intra-chunk (diagonal blocks)
# This is the analog of a causal mask
# print('segment_sum shape 1: ', A.shape)
# L = torch.exp(segment_sum(A))
L = torch.exp(segment_sum_modified(A)) # XAMBA: CumBA, cumsum_1 changed to MatMul
# First, contraction of C and B to get G (attention-weights like)
G_intermediate = C[:, :, :, None, :, :] * B[:, :, None, :, : ,:] # shape: (b, c, l, s, h, n)
G = G_intermediate.sum(dim=-1) # shape: (b, c, l, s, h)
# Step 2: Compute M, equivalent to applying attention mask to weights
M_intermediate = G[..., None] * L.permute(0, 2, 3, 4, 1)[..., None]
M = M_intermediate.sum(dim=-1)
# Step 3: Compute Y_diag (apply to values)
Y_diag = (M[..., None] * hidden_states[:, :, None]).sum(3)
# (right term of low-rank factorization of off-diagonal blocks; B terms)
decay_states = torch.exp((A_cumsum[:, :, :, -1:] - A_cumsum))
B_decay_contraction = B * decay_states.permute(0, 2, 3, 1)[..., None]
# permute back B * decay states
states = (B_decay_contraction.permute(0, 1, 3, 2, 4)[..., None] * hidden_states.permute(0, 1, 3, 2, 4)[..., None, :]).sum(dim=3).permute(0, 1, 2, 4, 3)
if cache_params is not None and cache_params.seqlen_offset > 0:
previous_states = cache_params.ssm_states[self.layer_idx][:, None, ...]
else:
previous_states = torch.zeros_like(states[:, :1])
states = torch.cat([previous_states, states], dim=1)
# print('segment_sum shape 2: ', nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0)).shape)
decay_chunk = torch.exp(segment_sum(nn.functional.pad(A_cumsum[:, :, :, -1], (1, 0))))
states_permuted = states.permute(0, 2, 1, 3, 4)
result = (decay_chunk[..., None, None] * states_permuted[:, :, None, ...]).sum(dim=2)
# result = torch.randn(1, 128, 2, 64, 128) ## AD: This was causing the problem for NPU broadcast Mul compilation
new_states = result.permute(0, 2, 1, 3, 4)
states, ssm_state = new_states[:, :-1], new_states[:, -1]
# Compute state -> output conversion per chunk
# (left term of low-rank factorization of off-diagonal blocks; C terms)
state_decay_out = torch.exp(A_cumsum)
# compute Yoff
C_times_states = (C[..., None, :] * states[:, :, None, ...])
state_decay_out_permuted = state_decay_out.permute(0, 2, 3, 1)
Y_off = (C_times_states.sum(-1) * state_decay_out_permuted[..., None])
# Add output of intra-chunk and inter-chunk terms (diagonal and off-diagonal blocks)
y = Y_diag + Y_off
# [bsz, -1, self.chunk_size, num_heads, head_dim] -> [bsz, (padded) seq_len, num_heads, head_dim]
y = y.reshape(batch_size, -1, self.num_heads, self.head_dim)
y = y + D_residual
# Cutting off padded chunks
if pad_size > 0:
y = y[:, :seq_len, :, :]
y = y.reshape(batch_size, seq_len, -1)
if ssm_state is not None and cache_params is not None:
cache_params.ssm_states[self.layer_idx].copy_(ssm_state)
scan_output = self.norm(y, gate)
# end ssd naive
# 4. Final linear projection
contextualized_states = self.out_proj(scan_output.to(dtype)) # [batch, seq_len, hidden_size]
return contextualized_states
# fmt: on
def forward(
self,
hidden_states,
cache_params: Optional[Mamba2Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
if is_fast_path_available and "cuda" in self.in_proj.weight.device.type:
return self.cuda_kernels_forward(hidden_states, cache_params, cache_position, attention_mask)
dtype = hidden_states.dtype
if attention_mask is not None and attention_mask.shape[1] > 1 and attention_mask.shape[0] > 1:
# tune out hidden states for pad tokens, see https://github.com/state-spaces/mamba/issues/66
hidden_states = (hidden_states * attention_mask[:, :, None]).to(dtype)
return self.torch_forward(hidden_states, cache_params, cache_position, attention_mask)
class Mamba2RMSNorm(nn.Module):
def __init__(self, hidden_size, eps=1e-6):
"""
Mamba2RMSNorm is equivalent to T5LayerNorm and LlamaRMSNorm
"""
super().__init__()
self.weight = nn.Parameter(torch.ones(hidden_size))
self.variance_epsilon = eps
def forward(self, hidden_states):
input_dtype = hidden_states.dtype
hidden_states = hidden_states.to(torch.float32)
variance = hidden_states.pow(2).mean(-1, keepdim=True)
hidden_states = hidden_states * torch.rsqrt(variance + self.variance_epsilon)
return self.weight * hidden_states.to(input_dtype)
class Mamba2Block(nn.Module):
def __init__(self, config, layer_idx):
super().__init__()
self.config = config
self.layer_idx = layer_idx
self.residual_in_fp32 = config.residual_in_fp32
self.norm = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
self.mixer = Mamba2Mixer(config, layer_idx=layer_idx)
def forward(
self,
hidden_states,
cache_params: Optional[Mamba2Cache] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
):
residual = hidden_states
hidden_states = self.norm(hidden_states.to(dtype=self.norm.weight.dtype))
if self.residual_in_fp32:
residual = residual.to(torch.float32)
hidden_states = self.mixer(
hidden_states, cache_params=cache_params, cache_position=cache_position, attention_mask=attention_mask
)
hidden_states = residual + hidden_states
return hidden_states
class Mamba2PreTrainedModel(PreTrainedModel):
"""
An abstract class to handle weights initialization and a simple interface for downloading and loading pretrained
models.
"""
config_class = Mamba2Config
base_model_prefix = "backbone"
_no_split_modules = ["Mamba2Block"]
supports_gradient_checkpointing = True
_is_stateful = True
def _init_weights(self, module):
"""Initialize the weights."""
if isinstance(module, Mamba2Mixer):
module.A_log._no_weight_decay = True
module.D._no_weight_decay = True
dt = torch.exp(
torch.rand(self.config.num_heads)
* (math.log(self.config.time_step_max) - math.log(self.config.time_step_min))
+ math.log(self.config.time_step_min)
).clamp(min=self.config.time_step_floor)
# # Inverse of softplus: https://github.com/pytorch/pytorch/issues/72759
inv_dt = dt + torch.log(-torch.expm1(-dt))
with torch.no_grad():
module.dt_bias.copy_(inv_dt)
module.dt_bias._no_reinit = True
if isinstance(module, nn.Linear):
if module.bias is not None:
if not getattr(module.bias, "_no_reinit", False):
nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
nn.init.normal_(module.weight, std=self.config.initializer_range)
if self.config.rescale_prenorm_residual:
# Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
# > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
# > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
# > -- GPT-2 :: https://openai.com/blog/better-language-models/
#
# Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
for name, p in module.named_parameters():
if name in ["out_proj.weight"]:
# Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
# Following Pytorch init, except scale by 1/sqrt(2 * n_layer)
# We need to reinit p since this code could be called multiple times
# Having just p *= scale would repeatedly scale it down
nn.init.kaiming_uniform_(p, a=math.sqrt(5))
with torch.no_grad():
p /= math.sqrt(self.config.num_hidden_layers)
@dataclass
# Copied from transformers.models.mamba.modeling_mamba.MambaOutput with MAMBA->MAMBA2,Mamba->Mamba2
class Mamba2Output(ModelOutput):
"""
Class for the MAMBA2 model outputs.
Args:
last_hidden_state (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
Sequence of hidden-states at the output of the last layer of the model.
cache_params (`Mamba2Cache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
last_hidden_state: Optional[torch.FloatTensor] = None
cache_params: Optional[Mamba2Cache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
@dataclass
# Copied from transformers.models.mamba.modeling_mamba.MambaCausalLMOutput with Mamba->Mamba2
class Mamba2CausalLMOutput(ModelOutput):
"""
Base class for causal language model (or autoregressive) outputs.
Args:
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
Language modeling loss (for next-token prediction).
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
cache_params (`Mamba2Cache`):
The state of the model at the last time step. Can be used in a forward method with the next `input_ids` to
avoid providing the old `input_ids`.
Includes both the State space model state matrices after the selective scan, and the Convolutional states
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
"""
loss: Optional[torch.FloatTensor] = None
logits: Optional[torch.FloatTensor] = None
cache_params: Optional[Mamba2Cache] = None
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
MAMBA2_START_DOCSTRING = r"""
This model inherits from [`PreTrainedModel`]. Check the superclass documentation for the generic methods the
library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads
etc.)
This model is also a PyTorch [torch.nn.Module](https://pytorch.org/docs/stable/nn.html#torch.nn.Module) subclass.
Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage
and behavior.
Parameters:
config ([`Mamba2Config`]): Model configuration class with all the parameters of the model.
Initializing with a config file does not load the weights associated with the model, only the
configuration. Check out the [`~PreTrainedModel.from_pretrained`] method to load the model weights.
"""
MAMBA2_INPUTS_DOCSTRING = r"""
Args:
input_ids (`torch.LongTensor` of shape `(batch_size, input_ids_length)`):
Indices of input sequence tokens in the vocabulary.
If `cache_params.seqlen_offset>0`, only `input_ids` that do not have their past calculated should be passed as
`input_ids`.
Indices can be obtained using [`AutoTokenizer`]. See [`PreTrainedTokenizer.encode`] and
[`PreTrainedTokenizer.__call__`] for details.
[What are input IDs?](../glossary#input-ids)
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
Optionally, instead of passing `input_ids` you can choose to directly pass an embedded representation. This
is useful if you want more control over how to convert `input_ids` indices into associated vectors than the
model's internal embedding lookup matrix.
cache_params (`Mamba2Cache`, *optional*):
If passed along, the model uses the previous state in all the blocks (which will give the output for the
`input_ids` provided as if the model add `state_input_ids + input_ids` as context).
use_cache (`bool`, *optional*):
If set to `True`, the `cache_params` is returned and can be used to quickly generate the next logits.
output_hidden_states (`bool`, *optional*):
Whether or not to return the hidden states of all layers. See `hidden_states` under returned tensors for
more detail.
return_dict (`bool`, *optional*):
Whether or not to return a [`~utils.ModelOutput`] instead of a plain tuple.
"""
@add_start_docstrings(
"The bare MAMBA2 Model transformer outputting raw hidden-states without any specific head on top.",
MAMBA2_START_DOCSTRING,
)
class Mamba2Model(Mamba2PreTrainedModel):
def __init__(self, config):
super().__init__(config)
self.embeddings = nn.Embedding(config.vocab_size, config.hidden_size)
self.layers = nn.ModuleList([Mamba2Block(config, layer_idx=idx) for idx in range(config.num_hidden_layers)])
self.gradient_checkpointing = False
self.norm_f = Mamba2RMSNorm(config.hidden_size, eps=config.layer_norm_epsilon)
# Initialize weights and apply final processing
self._register_load_state_dict_pre_hook(self.load_hook)
self.post_init()
def load_hook(self, state_dict, prefix, *args):
for k in state_dict:
if "embedding." in k:
state_dict[k.replace("embedding.", "embeddings.")] = state_dict.pop(k)
break
def get_input_embeddings(self):
return self.embeddings
def set_input_embeddings(self, new_embeddings):
self.embeddings = new_embeddings
@add_start_docstrings_to_model_forward(MAMBA2_INPUTS_DOCSTRING)
@add_code_sample_docstrings(
checkpoint=_CHECKPOINT_FOR_DOC,
output_type=Mamba2Output,
config_class=_CONFIG_FOR_DOC,
)
def forward(
self,
input_ids: Optional[torch.LongTensor] = None,
inputs_embeds: Optional[torch.LongTensor] = None,
cache_params: Optional[Mamba2Cache] = None,
use_cache: Optional[bool] = None,
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
attention_mask: Optional[torch.Tensor] = None,
**kwargs,
) -> Union[Tuple, Mamba2Output]:
output_hidden_states = (
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
)
use_cache = use_cache if use_cache is not None else (self.config.use_cache if not self.training else False)
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
if (input_ids is None) ^ (inputs_embeds is not None): # ^ is python for xor
raise ValueError("You must specify exactly one of input_ids or inputs_embeds")
if inputs_embeds is None:
inputs_embeds = self.embeddings(input_ids)
if self.gradient_checkpointing and self.training and use_cache:
use_cache = False
if use_cache:
if cache_params is None:
cache_params = Mamba2Cache(
self.config, inputs_embeds.size(0), device=inputs_embeds.device, dtype=inputs_embeds.dtype
)
cache_position = torch.arange(0, self.config.conv_kernel, device=inputs_embeds.device)
elif cache_position is None:
# cases when we do manual forward instead of using `model.generate` which will initiate
# `cache_position` and makes sure it is not None, throw error here instead of doing some
# hack to conjecture the current cache position
raise ValueError(
"You have to specify the `cache_position` manually when `use_cache=True` and `cache_params` is passed, "
"you don't have to pass a `cache_params` if you are in prefilling stage because in that case it will "
"be initialized for you automatically"
)
else:
cache_params = None
hidden_states = inputs_embeds
all_hidden_states = () if output_hidden_states else None
for mixer_block in self.layers:
if self.gradient_checkpointing and self.training:
hidden_states = self._gradient_checkpointing_func(
mixer_block.__call__, hidden_states, cache_params, cache_position, attention_mask
)
else:
hidden_states = mixer_block(
hidden_states,
cache_params=cache_params,
cache_position=cache_position,
attention_mask=attention_mask,
)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if use_cache:
cache_params.seqlen_offset += inputs_embeds.shape[1]
hidden_states = self.norm_f(hidden_states)
if output_hidden_states:
all_hidden_states = all_hidden_states + (hidden_states,)
if not return_dict:
return tuple(v for v in [hidden_states, cache_params, all_hidden_states] if v is not None)
return Mamba2Output(
last_hidden_state=hidden_states,
cache_params=cache_params if use_cache else None,
hidden_states=all_hidden_states,
)
@add_start_docstrings(
"""
The MAMBA2 Model transformer with a language modeling head on top (linear layer with weights not tied to the input
embeddings).
""",
MAMBA2_START_DOCSTRING,
)
class Mamba2ForCausalLM(Mamba2PreTrainedModel, GenerationMixin):
_tied_weights_keys = []
def __init__(self, config):
super().__init__(config)
self.backbone = Mamba2Model(config)
self.lm_head = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
# Initialize weights and apply final processing
self.post_init()
def get_output_embeddings(self):
return self.lm_head
def set_output_embeddings(self, new_embeddings):
self.lm_head = new_embeddings