-
Notifications
You must be signed in to change notification settings - Fork 169
/
Copy pathlow_rank_ne.m
82 lines (73 loc) · 1.68 KB
/
low_rank_ne.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
function [ Z, E ] = low_rank( X, lambda, maxIter, A )
%LOW_RANK Summary of this function goes here
% Detailed explanation goes here
d=size(X,1);
n=size(X,2);
Z=zeros(n,n);
J=Z;
E=zeros(d,n);
Y1=zeros(d,n);
Y2=zeros(n,n);
mu=1e-6;
max_mu=10^10;
rho=1.1;
epsilon=1e-8;
xtx=X'*X;
inv_x=inv(xtx+eye(n));
MAX_ITER=maxIter;
iter=0;
while true
if iter>MAX_ITER
fprintf(1,'max iter num reached!\n');
h=figure('Visible', 'off');
imagesc(Z);
colormap(gray);
axis equal;
saveas(h,'tmp.png');
break;
end
% 1. update J
Y=Z+Y2/mu;
tau=1/mu;
J=singular_value_shrinkage(Y,tau);
% 2. update Z
Z=inv_x*(xtx-X'*E+J+(X'*Y1-Y2)/mu);
Z=max(Z,0); % 非负矩阵
Z=bsxfun(@times, Z, A); % pair-wise multiple, A is the spatial constraints matrix
% 3. update E
tlambda=lambda/mu;
Q=X-X*Z+Y1/mu;
E=l21(Q,tlambda);
% 4. update Y1, Y2
xz=X-X*Z;
zj=Z-J;
leq1=xz-E;
leq2=zj;
Y1=Y1+mu*(leq1);
Y2=Y2+mu*(leq2);
% 5. update mu
mu=min(rho*mu,max_mu);
% 6. check the convergence
if max(max(abs(leq1)))<epsilon && max(max(abs(leq2)))<epsilon
fprintf(1,'iter %d, convergenced\n', iter);
h=figure('Visible', 'off');
imagesc(Z);
colormap(gray);
axis equal;
saveas(h,'tmp.png');
% disp('press any key to continue');
% pause;
break;
end
if mod(iter, 50)==0
% h=figure('Visible', 'off');
% imagesc(Z);
% colormap(gray);
% axis equal;
% saveas(h,'tmp.png');
disp(['iter ' num2str(iter) ' press any key to continue']);
% pause;
end
iter=iter+1;
end
end