-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtrain_maskrcnn.py
326 lines (270 loc) · 11.9 KB
/
train_maskrcnn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
import torch
import torchvision
from dataset import SegmentationDataset
import log_utils
import torch_utils
import datetime
import argparse
import time
import os
from vision.coco_utils import get_coco_api_from_dataset
from vision.coco_eval import CocoEvaluator
import vision.transforms as T
import math
from torchvision.models.detection.faster_rcnn import FastRCNNPredictor
from torchvision.models.detection.mask_rcnn import MaskRCNNPredictor
from torchvision.models.detection.rpn import AnchorGenerator
import sys
from PIL import Image
def get_model_instance_segmentation(num_classes):
# load an instance segmentation model pre-trained pre-trained on COCO
anchor_sizes = ((32,), (64,), (128,), (256,), (256,))
aspect_ratios = ((0.5, 1.0, 2.0),) * len(anchor_sizes)
anchor_generator = AnchorGenerator(sizes=anchor_sizes, aspect_ratios=aspect_ratios)
model = torchvision.models.detection.maskrcnn_resnet50_fpn(
pretrained=True, trainable_backbone_layers=5, rpn_anchor_generator = anchor_generator
)
# get number of input features for the classifier
in_features = model.roi_heads.box_predictor.cls_score.in_features
# replace the pre-trained head with a new one
model.roi_heads.box_predictor = FastRCNNPredictor(in_features, num_classes)
# now get the number of input features for the mask classifier
in_features_mask = model.roi_heads.mask_predictor.conv5_mask.in_channels
hidden_layer = 512
# and replace the mask predictor with a new one
model.roi_heads.mask_predictor = MaskRCNNPredictor(in_features_mask, hidden_layer, num_classes)
return model
def get_transform(train):
transforms = []
transforms.append(T.ToTensor())
if train:
transforms.append(T.RandomHorizontalFlip(0.5))
return T.Compose(transforms)
def get_data_loader(dataset_root, batch_size, is_real):
# use our dataset and defined transformations
dataset = SegmentationDataset(os.path.join(dataset_root, "train"), get_transform(train=True), is_real, background=os.path.join(dataset_root, "background.png"))
dataset_test = SegmentationDataset(os.path.join(dataset_root, "test"), get_transform(train=False), is_real, background=os.path.join(dataset_root, "background.png"))
# define training and validation data loaders
data_loader_train = torch.utils.data.DataLoader(
dataset,
batch_size=batch_size,
shuffle=True,
num_workers=0,
drop_last=True,
collate_fn=torch_utils.collate_fn,
)
data_loader_test = torch.utils.data.DataLoader(
dataset_test,
batch_size=batch_size,
shuffle=False,
num_workers=0,
drop_last=False,
collate_fn=torch_utils.collate_fn,
)
return data_loader_train, data_loader_test
def train_one_epoch(model, optimizer, data_loader, device, epoch, logger, print_freq, resume=False):
"""
https://github.com/pytorch/vision/blob/master/references/detection/engine.py
"""
model.train()
metric_logger = log_utils.MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", log_utils.SmoothedValue(window_size=1, fmt="{value:.8f}"))
header = "Epoch: [{}]".format(epoch)
lr_scheduler = None
if epoch == 0 and not resume:
warmup_factor = 1.0 / 1000
warmup_iters = min(1000, len(data_loader) - 1)
lr_scheduler = torch_utils.warmup_lr_scheduler(optimizer, warmup_iters, warmup_factor)
for images, targets in metric_logger.log_every(data_loader, print_freq, logger, header):
images = list(image.to(device) for image in images)
targets = [{k: v.to(device) for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
# reduce losses over all GPUs for logging purposes
loss_dict_reduced = torch_utils.reduce_dict(loss_dict)
losses_reduced = sum(loss for loss in loss_dict_reduced.values())
loss_value = losses_reduced.item()
if not math.isfinite(loss_value):
print("Loss is {}, stopping training".format(loss_value))
print(loss_dict_reduced)
sys.exit(1)
optimizer.zero_grad()
losses.backward()
optimizer.step()
if lr_scheduler is not None:
lr_scheduler.step()
metric_logger.update(loss=losses_reduced, **loss_dict_reduced)
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
return metric_logger
def _get_iou_types(model):
model_without_ddp = model
if isinstance(model, torch.nn.parallel.DistributedDataParallel):
model_without_ddp = model.module
iou_types = ["bbox"]
if isinstance(model_without_ddp, torchvision.models.detection.MaskRCNN):
iou_types.append("segm")
if isinstance(model_without_ddp, torchvision.models.detection.KeypointRCNN):
iou_types.append("keypoints")
return iou_types
@torch.no_grad()
def evaluate(model, data_loader, logger, device):
n_threads = torch.get_num_threads()
# FIXME remove this and make paste_masks_in_image run on the GPU
torch.set_num_threads(1)
cpu_device = torch.device("cpu")
model.eval()
metric_logger = log_utils.MetricLogger(delimiter=" ")
header = "Test:"
coco = get_coco_api_from_dataset(data_loader.dataset)
iou_types = _get_iou_types(model)
coco_evaluator = CocoEvaluator(coco, iou_types)
for images, targets in metric_logger.log_every(data_loader, 100, logger, header):
images = list(img.to(device) for img in images)
torch.cuda.synchronize()
model_time = time.time()
outputs = model(images)
outputs = [{k: v.to(cpu_device) for k, v in t.items()} for t in outputs]
model_time = time.time() - model_time
res = {target["image_id"].item(): output for target, output in zip(targets, outputs)}
evaluator_time = time.time()
coco_evaluator.update(res)
evaluator_time = time.time() - evaluator_time
metric_logger.update(model_time=model_time, evaluator_time=evaluator_time)
# gather the stats from all processes
coco_evaluator.synchronize_between_processes()
# accumulate predictions from all images
coco_evaluator.accumulate()
coco_evaluator.summarize()
torch.set_num_threads(n_threads)
return coco_evaluator
@torch.no_grad()
def test(model, data_loader, device):
import cv2
import numpy as np
model.eval()
print(len(data_loader.dataset))
count = 0
for images, targets in data_loader:
for i in range(len(images)):
print(targets[i]["image_id"])
image = images[i]
# target = targets[i]
# image = image.permute(1, 2, 0).numpy()
# image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
# image *= 255
# image = image.astype(np.uint8)
# cv2.imwrite(str(i) + 'color.png', image)
# masks = target['masks']
# for mi, m in enumerate(masks):
# img = m.numpy()
# img *= 255
# print(np.max(img), np.min(img))
# img = img.astype(np.uint8)
# cv2.imwrite(str(i+mi) + 'mask.png', img)
# exit(5)
prediction = model([image.to(device)])
print(prediction[0]["scores"])
print(prediction[0]["labels"])
pred_mask = np.zeros((720, 1280), dtype=np.uint8)
if len(targets[i]["masks"]) != np.sum(prediction[0]["scores"].cpu().numpy() > 0.95):
for idx, mask in enumerate(prediction[0]["masks"]):
if prediction[0]["scores"][idx] > 0.95:
# if prediction[0]['scores'][idx] > 0.75:
img1 = mask[0].mul(255).byte().cpu().numpy()
img1[img1 > 80] = 255
img1[img1 <= 80] = 0
pred_mask[img1 > 80] = 255 - idx * 10
img1 = Image.fromarray(img1)
img1.save(str(prediction[0]["labels"][idx].cpu().item()) + "-" + str(idx) + "mask.png")
for idx, mask in enumerate(targets[i]["masks"]):
img2 = Image.fromarray(mask.mul(255).byte().cpu().numpy())
img2.save(str(idx) + "-" + str(targets[i]["labels"][idx].cpu().item()) + "target.png")
print(len(targets[i]["masks"]), len(prediction[0]["masks"] > 0.7))
img0 = Image.fromarray(image.mul(255).permute(1, 2, 0).byte().numpy())
img0.save(str(count) + "-" + str(idx) + "ori.png")
img0 = Image.fromarray(pred_mask)
img0.save(str(count) + "-" + str(idx) + "pred.png")
count += 1
exit()
def main(args):
data_loader, data_loader_test = get_data_loader(
args.dataset_root, args.batch_size, args.is_real
)
device = torch.device("cuda") if torch.cuda.is_available() else torch.device("cpu")
model = get_model_instance_segmentation(6+1)
if args.resume:
# state_dict = torch.load(os.path.join(args.dataset_root, "maskrcnn.pth"))
# keep = lambda k: 'box_predictor' not in k and 'mask_predictor' not in k
# keep = lambda k: 'rpn.head' not in k
# state_dict = {k: v for k, v in state_dict.items() if keep(k)}
# model.load_state_dict(state_dict, strict=False)
model.load_state_dict(torch.load(os.path.join(args.dataset_root, "maskrcnn.pth")))
model = model.to(device)
# construct an optimizer
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=1e-4, momentum=0.9, weight_decay=1e-4)
# and a learning rate scheduler which decreases the learning rate by 10x every 1 epochs
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=[3, 5], gamma=0.1)
log_dir = os.path.join(args.dataset_root, "runs")
timestamp_value = datetime.datetime.fromtimestamp(time.time())
time_name = timestamp_value.strftime("%Y-%m-%d-%H-%M")
log_dir = os.path.join(log_dir, time_name)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logger = log_utils.setup_logger(log_dir, "Mask R-CNN")
if args.test:
test(model, data_loader_test, device=device)
else:
for epoch in range(args.epochs):
# train for one epoch, printing every 10 iterations
train_one_epoch(
model,
optimizer,
data_loader,
device,
epoch,
logger,
print_freq=50,
resume=args.resume,
)
torch.save(model.state_dict(), os.path.join(args.dataset_root, f"maskrcnn{epoch}.pth"))
# update the learning rate
lr_scheduler.step()
# evaluate on the test dataset
evaluate(model, data_loader_test, logger, device=device)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="Train foreground")
parser.add_argument(
"--dataset_root", dest="dataset_root", action="store", help="Enter the path to the dataset"
)
parser.add_argument("--is_real", dest="is_real", action="store_true", default=False, help="")
parser.add_argument(
"--epochs",
dest="epochs",
action="store",
type=int,
default=20,
help="Enter the epoch for training",
)
parser.add_argument(
"--batch_size",
dest="batch_size",
action="store",
type=int,
default=4,
help="Enter the batchsize for training and testing",
)
parser.add_argument(
"--test", dest="test", action="store_true", default=False, help="Testing and visualizing"
)
parser.add_argument(
"--resume",
dest="resume",
action="store_true",
default=False,
help="Enter the path to the dataset",
)
args = parser.parse_args()
if args.test:
args.resume = True
main(args)