-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathlog_utils.py
243 lines (203 loc) · 7.93 KB
/
log_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
from collections import defaultdict, deque
import datetime
import time
import logging
from termcolor import colored
import sys
import os
import torch
class SmoothedValue(object):
"""Track a series of values and provide access to smoothed values over a
window or the global series average.
https://github.com/pytorch/vision/blob/master/references/detection/utils.py
"""
def __init__(self, window_size=20, fmt=None):
if fmt is None:
fmt = "{median:.4f} (global_avg: {global_avg:.4f})"
self.deque = deque(maxlen=window_size)
self.total = 0.0
self.count = 0
self.fmt = fmt
def update(self, value, n=1):
self.deque.append(value)
self.count += n
self.total += value * n
@property
def median(self):
d = torch.tensor(list(self.deque))
return d.median().item()
@property
def avg(self):
d = torch.tensor(list(self.deque), dtype=torch.float32)
return d.mean().item()
@property
def global_avg(self):
return self.total / self.count
@property
def max(self):
return max(self.deque)
@property
def value(self):
return self.deque[-1]
def __str__(self):
return self.fmt.format(
median=self.median, avg=self.avg, global_avg=self.global_avg, max=self.max, value=self.value
)
class MetricLogger(object):
"""https://github.com/pytorch/vision/blob/master/references/segmentation/utils.py"""
def __init__(self, delimiter="\t"):
self.meters = defaultdict(SmoothedValue)
self.delimiter = delimiter
def update(self, **kwargs):
for k, v in kwargs.items():
if isinstance(v, torch.Tensor):
v = v.item()
assert isinstance(v, (float, int))
self.meters[k].update(v)
def __getattr__(self, attr):
if attr in self.meters:
return self.meters[attr]
if attr in self.__dict__:
return self.__dict__[attr]
raise AttributeError("'{}' object has no attribute '{}'".format(type(self).__name__, attr))
def __str__(self):
loss_str = []
for name, meter in self.meters.items():
loss_str.append("{}: {}".format(name, str(meter)))
return self.delimiter.join(loss_str)
def add_meter(self, name, meter):
self.meters[name] = meter
def log_every(self, iterable, print_freq, logger, header=None):
i = 0
if not header:
header = ""
start_time = time.time()
end = time.time()
iter_time = SmoothedValue(fmt="{avg:.4f}")
data_time = SmoothedValue(fmt="{avg:.4f}")
space_fmt = ":" + str(len(str(len(iterable)))) + "d"
if torch.cuda.is_available():
log_msg = self.delimiter.join(
[
header,
"[{0" + space_fmt + "}/{1}]",
"eta: {eta}",
"{meters}",
"time: {time}",
"data: {data}",
"max mem: {memory:.0f}",
]
)
else:
log_msg = self.delimiter.join(
[header, "[{0" + space_fmt + "}/{1}]", "eta: {eta}", "{meters}", "time: {time}", "data: {data}"]
)
MB = 1024.0 * 1024.0
for obj in iterable:
data_time.update(time.time() - end)
yield obj
iter_time.update(time.time() - end)
if i % print_freq == 0 or i == (len(iterable) - 1):
eta_seconds = iter_time.avg * (len(iterable) - 1 - i)
eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
if torch.cuda.is_available():
logger.info(
log_msg.format(
i,
len(iterable) - 1,
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
memory=torch.cuda.max_memory_allocated() / MB,
)
)
else:
logger.info(
log_msg.format(
i,
len(iterable) - 1,
eta=eta_string,
meters=str(self),
time=str(iter_time),
data=str(data_time),
)
)
i += 1
end = time.time()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info("{} Total time: {}".format(header, total_time_str))
class _ColorfulFormatter(logging.Formatter):
"""https://github.com/facebookresearch/detectron2/blob/299c4b0dbab6fe5fb81d3870636cfd86fc334447/detectron2/utils/logger.py"""
def __init__(self, *args, **kwargs):
self._root_name = kwargs.pop("root_name") + "."
super().__init__(*args, **kwargs)
def formatMessage(self, record):
log = super().formatMessage(record)
if record.levelno == logging.WARNING:
prefix = colored("WARNING", "red", attrs=["blink"])
elif record.levelno == logging.ERROR or record.levelno == logging.CRITICAL:
prefix = colored("ERROR", "red", attrs=["blink", "underline"])
elif record.levelno == logging.DEBUG:
prefix = colored("DEBUG", "grey")
else:
return log
return prefix + " " + log
def setup_logger(output_dir=None, name="Training"):
"""https://github.com/facebookresearch/detectron2/blob/299c4b0dbab6fe5fb81d3870636cfd86fc334447/detectron2/utils/logger.py"""
logger = logging.getLogger(name)
logger.setLevel(logging.DEBUG)
plain_formatter = logging.Formatter("[%(asctime)s] %(name)s %(levelname)s: %(message)s", datefmt="%m/%d %H:%M:%S")
color_formatter = _ColorfulFormatter(
colored("[%(asctime)s %(name)s]: ", "green") + "%(message)s", datefmt="%m/%d %H:%M:%S", root_name=name,
)
# stdout logging
ch = logging.StreamHandler(stream=sys.stdout)
ch.setFormatter(color_formatter)
logger.addHandler(ch)
# file logging
if output_dir is not None:
filename = os.path.join(output_dir, "log.txt")
fh = logging.FileHandler(filename)
fh.setFormatter(plain_formatter)
logger.addHandler(fh)
return logger
# def accuracy(output, target, topk=(1,)):
# """Computes the accuracy over the k top predictions for the specified values of k"""
# with torch.no_grad():
# maxk = max(topk)
# batch_size = target.size(0)
# if target.ndim == 2:
# target = target.max(dim=1)[1]
# _, pred = output.topk(maxk, 1, True, True)
# pred = pred.t()
# correct = pred.eq(target[None])
# res = []
# for k in topk:
# correct_k = correct[:k].flatten().sum(dtype=torch.float32)
# res.append(correct_k * (100.0 / batch_size))
# return res
def accuracy(output, target, probs=(0.5,)):
with torch.no_grad():
res = []
pred = torch.sigmoid(output)
batch_size = target.size(0)
for prob in probs:
correct = (pred > prob).float()
correct = correct.eq(target)
correct = correct.sum(dtype=torch.float32)
res.append(correct * (100.0 / batch_size))
return res
class Logger(object):
def __init__(self, file_name):
self.terminal = sys.stdout
self.log = open(file_name, "a")
def write(self, message):
self.terminal.write(message)
self.log.write(message)
def flush(self):
# this flush method is needed for python 3 compatibility.
# this handles the flush command by doing nothing.
# you might want to specify some extra behavior here.
pass