forked from Alpha-Raj/Depression-Detection
-
Notifications
You must be signed in to change notification settings - Fork 0
/
excel-handler.py
53 lines (46 loc) · 1.9 KB
/
excel-handler.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import os
import pandas as pd
from data_preprocessing import preprocess
# Directory which will hold the transcripts.csv file of all the participants
DIRECTORY = "data"
PARTICIPANT = "Participant"
GROUND_TRUTH_FILE = "dev_split_Depression_AVEC2017.csv"
Participant_ID = "Participant_ID"
PHQ8_Score = "PHQ8_Score"
def get_gt_value(gt_file, participant_id):
"""
function which will accept the participant id and Ground Truth File and
will return its respective ground truth
:param gt_file: Ground truth File Handler
:param participant_id: Participant Id
:return: ground truth value
"""
for index, row in gt_file.iterrows():
pid = row['Participant_ID']
if str(pid) == participant_id:
y_train = row['PHQ8_Score']
return y_train
print("Ground Truth for " + participant_id + " Not Found")
return -1
def open_and_extract():
data = []
files = [os.path.join(DIRECTORY, file) for file in os.listdir(DIRECTORY)]
gt_file = pd.read_csv(GROUND_TRUTH_FILE, sep=',')
for file in files:
participant_id = file.split("/")[1].split("_")[0]
y_train = get_gt_value(gt_file, participant_id)
if y_train != -1: # All the participants whose GT is Absent will not be considered.
x_train = ""
df = pd.read_csv(file, sep='\t')
for index, row in df.iterrows():
if row['speaker'] == PARTICIPANT:
value = row['value']
x_train = x_train + " " + value
print("Data found Participant Id:" + participant_id)
data.append([preprocess(x_train), y_train])
data_df = pd.DataFrame(data, columns=[Participant_ID, PHQ8_Score])
data_df.to_csv("Dev-Data", sep=',', index=False)
if __name__ == '__main__':
print("****** File reading Process Started ******")
open_and_extract()
print("****** File reading Process Started ******")