-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathutils.py
140 lines (115 loc) · 3.34 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
import torch
import numpy as np
import random
import importlib
import logging
import datetime
import os
import sys
import numpy as np
from datetime import datetime, timedelta
import argparse
def str2bool(s):
if isinstance(s, bool):
return s
if s.lower() in ('yes', 'true'):
return True
elif s.lower() in ('no', 'false'):
return False
else:
raise argparse.ArgumentTypeError('bool value expected.')
def str2float(s):
if isinstance(s, float):
return s
try:
x = float(s)
except ValueError:
raise argparse.ArgumentTypeError('float value expected.')
return x
def set_random_seed(seed):
"""
重置随机数种子
Args:
seed(int): 种子数
"""
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.deterministic = True
def get_local_time():
"""
获取时间
Return:
datetime: 时间
"""
cur = datetime.now()
cur = cur.strftime('%b-%d-%Y_%H-%M-%S')
return cur
def ensure_dir(dir_path):
"""Make sure the directory exists, if it does not exist, create it.
Args:
dir_path (str): directory path
"""
if not os.path.exists(dir_path):
os.makedirs(dir_path)
def get_logger(config, name=None):
"""
获取Logger对象
Args:
config(ConfigParser): config
name: specified name
Returns:
Logger: logger
"""
log_dir = './log'
if not os.path.exists(log_dir):
os.makedirs(log_dir)
log_filename = '{}-{}-{}.log'.format(config['exp_id'], config['model_name'], get_local_time())
logfilepath = os.path.join(log_dir, log_filename)
logger = logging.getLogger(name)
log_level = config.get('log_level', 'INFO')
if log_level.lower() == 'info':
level = logging.INFO
elif log_level.lower() == 'debug':
level = logging.DEBUG
elif log_level.lower() == 'error':
level = logging.ERROR
elif log_level.lower() == 'warning':
level = logging.WARNING
elif log_level.lower() == 'critical':
level = logging.CRITICAL
else:
level = logging.INFO
logger.setLevel(level)
formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s')
file_handler = logging.FileHandler(logfilepath)
file_handler.setFormatter(formatter)
console_formatter = logging.Formatter(
'%(asctime)s - %(levelname)s - %(message)s')
console_handler = logging.StreamHandler(sys.stdout)
console_handler.setFormatter(console_formatter)
logger.addHandler(file_handler)
logger.addHandler(console_handler)
logger.info('Log directory: %s', log_dir)
return logger
def save_model_with_epoch(model, optimizer, epoch, save_path):
"""
保存某个epoch的模型
Args:
epoch(int): 轮数
"""
res = dict()
res['model_state_dict'] = model.state_dict()
res['optimizer_state_dict'] = optimizer.state_dict()
res['epoch'] = epoch
torch.save(res, save_path)
def load_model_with_epoch(model, optimizer, save_path):
"""
加载某个epoch的模型
Args:
epoch(int): 轮数
"""
checkpoint = torch.load(save_path, map_location='cpu')
model.load_state_dict(checkpoint['model_state_dict'])
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])