-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathutils_stereofog.py
204 lines (163 loc) · 7.97 KB
/
utils_stereofog.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
# -*- coding: utf-8 -*-
"""
Created on Tue 15 Aug 2023
Utility functions by Anton Pollak used in the stereofog project
"""
import os
import numpy as np
from skimage.metrics import structural_similarity
from ssim import SSIM
from ssim.utils import get_gaussian_kernel
from pytorch_msssim import ms_ssim
from PIL import Image
import cv2
import re
import torch
import torch.nn as nn # For the custom loss function
from torch import squeeze
from PIL import Image
import torchvision.transforms as T
# code for detecting the blurriness of an image (https://pyimagesearch.com/2015/09/07/blur-detection-with-opencv/)
def variance_of_laplacian(image):
# compute the Laplacian of the image and then return the focus
# measure, which is simply the variance of the Laplacian
return cv2.Laplacian(image, cv2.CV_32F).var()
# Code for calculating the MSE between two images (https://www.tutorialspoint.com/how-to-compare-two-images-in-opencv-python)
def image_mse(img1, img2):
h, w = img1.shape
diff = cv2.subtract(img1, img2)
err = np.sum(diff**2)
mse = err/(float(h*w))
return mse
# -- Normalized correlation coefficient (NCC) (https://xcdskd.readthedocs.io/en/latest/cross_correlation/cross_correlation_coefficient.html#Application-as-an-Image-Similarity-Measure)
def norm_data(data):
"""
normalize data to have mean=0 and standard_deviation=1
"""
mean_data=np.mean(data)
std_data=np.std(data, ddof=1)
#return (data-mean_data)/(std_data*np.sqrt(data.size-1))
return (data-mean_data)/(std_data)
def image_ncc(img1, img2):
"""
normalized cross-correlation coefficient between two data sets
Parameters
----------
img1, img2 : numpy arrays of same size
"""
return (1.0/(img1.size-1)) * np.sum(norm_data(img1)*norm_data(img2))
def calculate_model_results(results_path, epoch='latest', epoch_test=False):
if epoch_test:
model_name = results_path.split('/')[-2].replace('_epochs', '')
results_path = os.path.join(results_path, f'{model_name}/test_{epoch}/images')
else:
results_path = os.path.join(results_path, f'test_{epoch}/images')
# CW-SSIM implementation
gaussian_kernel_sigma = 1.5
gaussian_kernel_width = 11
gaussian_kernel_1d = get_gaussian_kernel(gaussian_kernel_width, gaussian_kernel_sigma)
# Indexing the images
images = [entry for entry in os.listdir(results_path) if 'fake_B' in entry]
Pearson_image_correlations = []
MSE_scores = []
PSNR_scores = []
NCC_scores = []
SSIM_scores = []
CW_SSIM_scores = []
MS_SSIM_scores = []
print('Calculating scores for model:', results_path.split('/')[-3])
for i, image in enumerate(images):
clear_image_nonfloat = cv2.imread(os.path.join(results_path, images[i][:-10] + 'real_B' + '.png'))
fogged_image_nonfloat = cv2.imread(os.path.join(results_path, images[i][:-10] + 'real_A' + '.png'))
fake_image_nonfloat = cv2.imread(os.path.join(results_path, images[i]))
# Calculating the Pearson correlation coefficient between the two images (https://stackoverflow.com/questions/34762661/percentage-difference-between-two-images-in-python-using-correlation-coefficient, https://mbrow20.github.io/mvbrow20.github.io/PearsonCorrelationPixelAnalysis.html)
clear_image_gray = cv2.cvtColor(clear_image_nonfloat, cv2.COLOR_BGR2GRAY)
fake_image_gray = cv2.cvtColor(fake_image_nonfloat, cv2.COLOR_BGR2GRAY)
Pearson_image_correlation = np.corrcoef(np.asarray(fake_image_gray), np.asarray(clear_image_gray))
corrImAbs = np.absolute(Pearson_image_correlation)
Pearson_image_correlations.append(np.mean(corrImAbs))
# Calculating the MSE between the two images
MSE_score = image_mse(clear_image_gray, fake_image_gray)
MSE_scores.append(MSE_score)
PSNR_score = cv2.PSNR(clear_image_nonfloat, fake_image_nonfloat)
PSNR_scores.append(PSNR_score)
# Calculating the NCC between the two images
NCC_score = image_ncc(clear_image_gray, fake_image_gray)
NCC_scores.append(NCC_score)
# Calculating the SSIM between the fake image and the clear image
(SSIM_score_reconstruction, SSIM_diff_reconstruction) = structural_similarity(clear_image_nonfloat, fogged_image_nonfloat, full=True, multichannel=True, channel_axis=2)
SSIM_scores.append(SSIM_score_reconstruction)
# Calculating the CW-SSIM between the fake image and the clear image (https://github.com/jterrace/pyssim)
CW_SSIM = SSIM(Image.open(os.path.join(results_path, images[i][:-10] + 'real_B' + '.png'))).cw_ssim_value(Image.open(os.path.join(results_path, images[i])))
CW_SSIM_scores.append(CW_SSIM)
# Calculating the MS-SSIM between the fake image and the clear image
real_img = np.array(Image.open(os.path.join(results_path, images[i][:-10] + 'real_B' + '.png'))).astype(np.float32)
real_img = torch.from_numpy(real_img).unsqueeze(0).permute(0, 3, 1, 2)
fake_img = np.array(Image.open(os.path.join(results_path, images[i]))).astype(np.float32)
fake_img = torch.from_numpy(fake_img).unsqueeze(0).permute(0, 3, 1, 2)
MS_SSIM = ms_ssim(real_img, fake_img, data_range=255, size_average=True).item()
MS_SSIM_scores.append(MS_SSIM)
if i % 25 == 0:
print(f'Image {i} of {len(images)}')
# Calculate the average values
mean_Pearson = np.mean(Pearson_image_correlations)
mean_MSE = np.mean(MSE_scores)
mean_PSNR = np.mean(PSNR_scores)
mean_NCC = np.mean(NCC_scores)
mean_SSIM = np.mean(SSIM_scores)
mean_CW_SSIM = np.mean(CW_SSIM_scores)
mean_MS_SSIM = np.mean(MS_SSIM_scores)
return mean_Pearson, mean_MSE, mean_PSNR, mean_NCC, mean_SSIM, mean_CW_SSIM, mean_MS_SSIM
# Code source: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/issues/1161
def generate_stats_from_log(experiment_name, line_interval=10, nb_data=10800, enforce_last_line=True, fig = None, ax = None, highlight_epoch=None):
"""
Generate chart with all losses from log file generated by CycleGAN/Pix2pix/CUT framework
"""
#extract every lines
with open(os.path.join(experiment_name, "loss_log.txt"), 'r') as f:
lines = f.readlines()
#choose the lines to use for plotting
lines_for_plot = []
for i in range(1,len(lines)):
if (i-1) % line_interval==0:
lines_for_plot.append(lines[i])
if enforce_last_line:
lines_for_plot.append(lines[-1])
#initialize dict with loss names
dicts = dict()
dicts["epoch"] = []
parts = (lines_for_plot[0]).split(') ')[1].split(' ')
for i in range(0, len(parts)//2):
dicts[parts[2*i][:-1]] = []
#extract all data
pattern = "epoch: ([0-9]+), iters: ([0-9]+)"
for l in lines_for_plot:
search = re.search(pattern, l)
epoch = int(search.group(1))
epoch_floatpart = int(search.group(2))/nb_data
dicts["epoch"].append(epoch+epoch_floatpart) #to allow several plots for the same epoch
parts = l.split(') ')[1].split(' ')
for i in range(0, len(parts)//2):
dicts[parts[2*i][:-1]].append(float(parts[2*i+1]))
#plot everything
if fig is None and ax is None:
fig, ax = plt.subplots(1,1)
# plt.figure()
for key in dicts.keys():
if key != "epoch":
ax.plot(dicts["epoch"], dicts[key], label=key)
ax.legend(loc="best")
if highlight_epoch is not None:
ax.scatter(highlight_epoch, dicts['G_GAN'][highlight_epoch])
ax.scatter(highlight_epoch, dicts['G_L1'][highlight_epoch])
ax.scatter(highlight_epoch, dicts['D_real'][highlight_epoch])
ax.scatter(highlight_epoch, dicts['D_fake'][highlight_epoch])
return fig, ax
image_transform = T.ToPILImage()
class CW_SSIM(nn.Module):
def __init__(self):
super(CW_SSIM, self).__init__()
def forward(self, inputs, targets):
# print('Shapes:', inputs.min(), inputs.max())
loss = SSIM(image_transform(squeeze(inputs))).cw_ssim_value(image_transform(squeeze(targets)))
return loss