You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
D:\anaconda3\envs\torch_1_11\lib\site-packages\numpy\core\shape_base.py:420: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
arrays = [asanyarray(arr) for arr in arrays]
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
==> image down scale: 1.0
==> image down scale: 1.0
D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\utilities\distributed.py:69: UserWarning: The dataloader, val dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the num_workers argument(try 16 which is the number of cpus on this machine) in theDataLoader` init to improve performance.
warnings.warn(*args, **kwargs)
Validation sanity check: 0%| | 0/1 [00:00<?, ?it/s]Traceback (most recent call last):
File "G:/sc/mvsnerf-main/train_mvs_nerf_pl.py", line 320, in
trainer.fit(system)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 458, in fit
self._run(model)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 756, in _run
self.dispatch()
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 797, in dispatch
self.accelerator.start_training(self)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\accelerators\accelerator.py", line 96, in start_training
self.training_type_plugin.start_training(trainer)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\plugins\training_type\training_type_plugin.py", line 144, in start_training
self._results = trainer.run_stage()
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 807, in run_stage
return self.run_train()
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 842, in run_train
self.run_sanity_check(self.lightning_module)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1107, in run_sanity_check
self.run_evaluation()
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 962, in run_evaluation
output = self.evaluation_loop.evaluation_step(batch, batch_idx, dataloader_idx)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\evaluation_loop.py", line 174, in evaluation_step
output = self.trainer.accelerator.validation_step(args)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\accelerators\accelerator.py", line 226, in validation_step
return self.training_type_plugin.validation_step(args)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\plugins\training_type\training_type_plugin.py", line 161, in validation_step
return self.lightning_module.validation_step(args, **kwargs)
File "G:/sc/mvsnerf-main/train_mvs_nerf_pl.py", line 195, in validation_step
volume_feature, img_feat, _ = self.MVSNet(imgs[:, :3], proj_mats[:, :3], near_fars[0], pad=args.pad)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(input, **kwargs)
File "G:\sc\mvsnerf-main\models.py", line 904, in forward
feats = self.feature(imgs) # (BV, 8, H, W), (BV, 16, H//2, W//2), (BV, 32, H//4, W//4)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "G:\sc\mvsnerf-main\models.py", line 717, in forward
x = self.conv0(x) # (B, 8, H, W)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\container.py", line 141, in forward
input = module(input)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "G:\sc\mvsnerf-main\models.py", line 672, in forward
return self.bn(self.conv(x))
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\inplace_abn\abn.py", line 237, in forward
return inplace_abn(
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\inplace_abn\functions.py", line 241, in inplace_abn
return InPlaceABN.apply(
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\inplace_abn\functions.py", line 100, in forward
mean, var, count = _backend.statistics(x)
TypeError: cannot unpack non-iterable NoneType object
This problem occurred at the beginning of training. Does anyone know how to solve it?
The text was updated successfully, but these errors were encountered:
GPU available: True, used: True
TPU available: False, using: 0 TPU cores
D:\anaconda3\envs\torch_1_11\lib\site-packages\numpy\core\shape_base.py:420: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray.
arrays = [asanyarray(arr) for arr in arrays]
LOCAL_RANK: 0 - CUDA_VISIBLE_DEVICES: [0]
==> image down scale: 1.0
==> image down scale: 1.0
D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\utilities\distributed.py:69: UserWarning: The dataloader, val dataloader 0, does not have many workers which may be a bottleneck. Consider increasing the value of the
num_workers
argument(try 16 which is the number of cpus on this machine) in the
DataLoader` init to improve performance.warnings.warn(*args, **kwargs)
Validation sanity check: 0%| | 0/1 [00:00<?, ?it/s]Traceback (most recent call last):
File "G:/sc/mvsnerf-main/train_mvs_nerf_pl.py", line 320, in
trainer.fit(system)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 458, in fit
self._run(model)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 756, in _run
self.dispatch()
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 797, in dispatch
self.accelerator.start_training(self)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\accelerators\accelerator.py", line 96, in start_training
self.training_type_plugin.start_training(trainer)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\plugins\training_type\training_type_plugin.py", line 144, in start_training
self._results = trainer.run_stage()
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 807, in run_stage
return self.run_train()
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 842, in run_train
self.run_sanity_check(self.lightning_module)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 1107, in run_sanity_check
self.run_evaluation()
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\trainer.py", line 962, in run_evaluation
output = self.evaluation_loop.evaluation_step(batch, batch_idx, dataloader_idx)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\trainer\evaluation_loop.py", line 174, in evaluation_step
output = self.trainer.accelerator.validation_step(args)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\accelerators\accelerator.py", line 226, in validation_step
return self.training_type_plugin.validation_step(args)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\pytorch_lightning\plugins\training_type\training_type_plugin.py", line 161, in validation_step
return self.lightning_module.validation_step(args, **kwargs)
File "G:/sc/mvsnerf-main/train_mvs_nerf_pl.py", line 195, in validation_step
volume_feature, img_feat, _ = self.MVSNet(imgs[:, :3], proj_mats[:, :3], near_fars[0], pad=args.pad)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(input, **kwargs)
File "G:\sc\mvsnerf-main\models.py", line 904, in forward
feats = self.feature(imgs) # (BV, 8, H, W), (BV, 16, H//2, W//2), (BV, 32, H//4, W//4)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "G:\sc\mvsnerf-main\models.py", line 717, in forward
x = self.conv0(x) # (B, 8, H, W)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\container.py", line 141, in forward
input = module(input)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "G:\sc\mvsnerf-main\models.py", line 672, in forward
return self.bn(self.conv(x))
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\torch\nn\modules\module.py", line 1110, in _call_impl
return forward_call(*input, **kwargs)
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\inplace_abn\abn.py", line 237, in forward
return inplace_abn(
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\inplace_abn\functions.py", line 241, in inplace_abn
return InPlaceABN.apply(
File "D:\anaconda3\envs\torch_1_11\lib\site-packages\inplace_abn\functions.py", line 100, in forward
mean, var, count = _backend.statistics(x)
TypeError: cannot unpack non-iterable NoneType object
This problem occurred at the beginning of training. Does anyone know how to solve it?
The text was updated successfully, but these errors were encountered: