-
Notifications
You must be signed in to change notification settings - Fork 84
/
Copy pathtrain_mvs_nerf_pl.py
322 lines (243 loc) · 13.9 KB
/
train_mvs_nerf_pl.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
from opt import config_parser
from torch.utils.data import DataLoader
import imageio
from data import dataset_dict
# models
from models import *
from renderer import *
from utils import *
# optimizer, scheduler, visualization
from torch.optim.lr_scheduler import CosineAnnealingLR
# pytorch-lightning
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning import LightningModule, Trainer, loggers
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
class SL1Loss(nn.Module):
def __init__(self, levels=3):
super(SL1Loss, self).__init__()
self.levels = levels
self.loss = nn.SmoothL1Loss(reduction='mean')
def forward(self, depth_pred, depth_gt, mask=None):
if None == mask:
mask = depth_gt > 0
loss = self.loss(depth_pred[mask], depth_gt[mask]) * 2 ** (1 - 2)
return loss
class MVSSystem(LightningModule):
def __init__(self, args):
super(MVSSystem, self).__init__()
self.args = args
self.args.feat_dim = 8+3*4
self.idx = 0
self.loss = SL1Loss()
self.learning_rate = args.lrate
# Create nerf model
self.render_kwargs_train, self.render_kwargs_test, start, self.grad_vars = create_nerf_mvs(args, use_mvs=True, dir_embedder=False, pts_embedder=True)
filter_keys(self.render_kwargs_train)
# Create mvs model
self.MVSNet = self.render_kwargs_train['network_mvs']
self.render_kwargs_train.pop('network_mvs')
self.render_kwargs_train['NDC_local'] = False
self.eval_metric = [0.01,0.05, 0.1]
def decode_batch(self, batch, idx=list(torch.arange(4))):
data_mvs = sub_selete_data(batch, device, idx, filtKey=[])
pose_ref = {'w2cs': data_mvs['w2cs'].squeeze(), 'intrinsics': data_mvs['intrinsics'].squeeze(),
'c2ws': data_mvs['c2ws'].squeeze(),'near_fars':data_mvs['near_fars'].squeeze()}
return data_mvs, pose_ref
def unpreprocess(self, data, shape=(1,1,3,1,1)):
# to unnormalize image for visualization
# data N V C H W
device = data.device
mean = torch.tensor([-0.485 / 0.229, -0.456 / 0.224, -0.406 / 0.225]).view(*shape).to(device)
std = torch.tensor([1 / 0.229, 1 / 0.224, 1 / 0.225]).view(*shape).to(device)
return (data - mean) / std
def forward(self):
return
def prepare_data(self):
dataset = dataset_dict[self.args.dataset_name]
train_dir, val_dir = self.args.datadir , self.args.datadir
self.train_dataset = dataset(root_dir=train_dir, split='train', max_len=-1 , downSample=args.imgScale_train)
self.val_dataset = dataset(root_dir=val_dir, split='val', max_len=10 , downSample=args.imgScale_test)#
def configure_optimizers(self):
eps = 1e-7
self.optimizer = torch.optim.Adam(self.grad_vars, lr=self.learning_rate, betas=(0.9, 0.999))
scheduler = CosineAnnealingLR(self.optimizer, T_max=self.args.num_epochs, eta_min=eps)
return [self.optimizer], [scheduler]
def train_dataloader(self):
return DataLoader(self.train_dataset,
shuffle=True,
num_workers=8,
batch_size=1,
pin_memory=True)
def val_dataloader(self):
return DataLoader(self.val_dataset,
shuffle=False,
num_workers=1,
batch_size=1,
pin_memory=True)
def training_step(self, batch, batch_nb):
if 'scan' in batch.keys():
batch.pop('scan')
log, loss = {},0
data_mvs, pose_ref = self.decode_batch(batch)
imgs, proj_mats = data_mvs['images'], data_mvs['proj_mats']
near_fars, depths_h = data_mvs['near_fars'], data_mvs['depths_h']
volume_feature, img_feat, depth_values = self.MVSNet(imgs[:, :3], proj_mats[:, :3], near_fars[0,0],pad=args.pad)
imgs = self.unpreprocess(imgs)
N_rays, N_samples = args.batch_size, args.N_samples
c2ws, w2cs, intrinsics = pose_ref['c2ws'], pose_ref['w2cs'], pose_ref['intrinsics']
rays_pts, rays_dir, target_s, rays_NDC, depth_candidates, rays_o, rays_depth, ndc_parameters = \
build_rays(imgs, depths_h, pose_ref, w2cs, c2ws, intrinsics, near_fars, N_rays, N_samples, pad=args.pad)
rgb, disp, acc, depth_pred, alpha, ret = rendering(args, pose_ref, rays_pts, rays_NDC, depth_candidates, rays_o, rays_dir,
volume_feature, imgs[:, :-1], img_feat=None, **self.render_kwargs_train)
if self.args.with_depth:
mask = rays_depth > 0
if self.args.with_depth_loss:
loss += self.loss(depth_pred, rays_depth, mask)
self.log(f'train/acc_l_{self.eval_metric[0]}mm', acc_threshold(depth_pred, rays_depth, mask,
self.eval_metric[0]).mean(), prog_bar=False)
self.log(f'train/acc_l_{self.eval_metric[1]}mm', acc_threshold(depth_pred, rays_depth, mask,
self.eval_metric[1]).mean(), prog_bar=False)
self.log(f'train/acc_l_{self.eval_metric[2]}mm', acc_threshold(depth_pred, rays_depth, mask,
self.eval_metric[2]).mean(), prog_bar=False)
abs_err = abs_error(depth_pred, rays_depth, mask).mean()
self.log('train/abs_err', abs_err, prog_bar=True)
################## rendering #####################
img_loss = img2mse(rgb, target_s)
loss = loss + img_loss
if 'rgb0' in ret:
img_loss_coarse = img2mse(ret['rgb0'], target_s)
psnr = mse2psnr2(img_loss_coarse.item())
self.log('train/PSNR_coarse', psnr.item(), prog_bar=True)
loss = loss + img_loss_coarse
if args.with_depth:
psnr = mse2psnr(img2mse(rgb.cpu()[mask], target_s.cpu()[mask]))
psnr_out = mse2psnr(img2mse(rgb.cpu()[~mask], target_s.cpu()[~mask]))
self.log('train/PSNR_out', psnr_out.item(), prog_bar=True)
else:
psnr = mse2psnr2(img_loss.item())
with torch.no_grad():
self.log('train/loss', loss, prog_bar=True)
self.log('train/img_mse_loss', img_loss.item(), prog_bar=False)
self.log('train/PSNR', psnr.item(), prog_bar=True)
if self.global_step % 20000==19999:
self.save_ckpt(f'{self.global_step}')
return {'loss':loss}
def validation_step(self, batch, batch_nb):
if 'scan' in batch.keys():
batch.pop('scan')
log = {}
data_mvs, pose_ref = self.decode_batch(batch)
imgs, proj_mats = data_mvs['images'], data_mvs['proj_mats']
near_fars, depths_h = pose_ref['near_fars'], data_mvs['depths_h']
self.MVSNet.train()
H, W = imgs.shape[-2:]
H, W = int(H), int(W)
################## rendering #####################
keys = ['val_psnr', 'val_depth_loss_r', 'val_abs_err', 'mask_sum'] + [f'val_acc_{i}mm' for i in self.eval_metric]
log = init_log(log, keys)
with torch.no_grad():
args.img_downscale = torch.rand((1,)) * 0.75 + 0.25 # for super resolution
world_to_ref = pose_ref['w2cs'][0]
tgt_to_world, intrinsic = pose_ref['c2ws'][-1], pose_ref['intrinsics'][-1]
volume_feature, img_feat, _ = self.MVSNet(imgs[:, :3], proj_mats[:, :3], near_fars[0], pad=args.pad)
imgs = self.unpreprocess(imgs)
rgbs, depth_preds = [],[]
for chunk_idx in range(H*W//args.chunk + int(H*W%args.chunk>0)):
rays_pts, rays_dir, rays_NDC, depth_candidates, rays_o, ndc_parameters = \
build_rays_test(H, W, tgt_to_world, world_to_ref, intrinsic, near_fars, near_fars[-1], args.N_samples, pad=args.pad, chunk=args.chunk, idx=chunk_idx)
# rendering
rgb, disp, acc, depth_pred, density_ray, ret = rendering(args, pose_ref, rays_pts, rays_NDC, depth_candidates, rays_o, rays_dir,
volume_feature, imgs[:, :-1], img_feat=None, **self.render_kwargs_train)
rgbs.append(rgb.cpu());depth_preds.append(depth_pred.cpu())
imgs = imgs.cpu()
rgb, depth_r = torch.clamp(torch.cat(rgbs).reshape(H, W, 3).permute(2,0,1),0,1), torch.cat(depth_preds).reshape(H, W)
img_err_abs = (rgb - imgs[0,-1]).abs()
if self.args.with_depth:
depth_gt_render = depths_h[0, -1].cpu()
mask = depth_gt_render > 0
log['val_psnr'] = mse2psnr(torch.mean(img_err_abs[:,mask] ** 2))
else:
log['val_psnr'] = mse2psnr(torch.mean(img_err_abs**2))
if self.args.with_depth:
log['val_depth_loss_r'] = self.loss(depth_r, depth_gt_render, mask)
minmax = [2.0,6.0]
depth_gt_render_vis,_ = visualize_depth(depth_gt_render,minmax)
depth_pred_r_, _ = visualize_depth(depth_r, minmax)
depth_err_, _ = visualize_depth(torch.abs(depth_r-depth_gt_render)*5, minmax)
img_vis = torch.stack((depth_gt_render_vis, depth_pred_r_, depth_err_))
self.logger.experiment.add_images('val/depth_gt_pred_err', img_vis, self.global_step)
log['val_abs_err'] = abs_error(depth_r, depth_gt_render, mask).sum()
log[f'val_acc_{self.eval_metric[0]}mm'] = acc_threshold(depth_r, depth_gt_render, mask, self.eval_metric[0]).sum()
log[f'val_acc_{self.eval_metric[1]}mm'] = acc_threshold(depth_r, depth_gt_render, mask, self.eval_metric[1]).sum()
log[f'val_acc_{self.eval_metric[2]}mm'] = acc_threshold(depth_r, depth_gt_render, mask, self.eval_metric[2]).sum()
log['mask_sum'] = mask.float().sum()
else:
minmax = [2.0, 6.0]
depth_pred_r_, _ = visualize_depth(depth_r, minmax)
self.logger.experiment.add_images('val/depth_gt_pred_err', depth_pred_r_[None], self.global_step)
imgs = imgs[0]
img_vis = torch.cat((imgs, torch.stack((rgb, img_err_abs.cpu()*5))), dim=0) # N 3 H W
self.logger.experiment.add_images('val/rgb_pred_err', img_vis, self.global_step)
os.makedirs(f'runs_new/{self.args.expname}/{self.args.expname}/',exist_ok=True)
img_vis = torch.cat((img_vis,depth_pred_r_[None]),dim=0).permute(2,0,3,1).reshape(img_vis.shape[2],-1,3).numpy()
imageio.imwrite(f'runs_new/{self.args.expname}/{self.args.expname}/{self.global_step:08d}_{self.idx:02d}.png', (img_vis*255).astype('uint8'))
self.idx += 1
del rays_NDC, rays_dir, rays_pts, volume_feature
return log
def validation_epoch_end(self, outputs):
mean_psnr = torch.stack([x['val_psnr'] for x in outputs]).mean()
mask_sum = torch.stack([x['mask_sum'] for x in outputs]).sum()
mean_d_loss_r = torch.stack([x['val_depth_loss_r'] for x in outputs]).mean()
mean_abs_err = torch.stack([x['val_abs_err'] for x in outputs]).sum() / mask_sum
mean_acc_1mm = torch.stack([x[f'val_acc_{self.eval_metric[0]}mm'] for x in outputs]).sum() / mask_sum
mean_acc_2mm = torch.stack([x[f'val_acc_{self.eval_metric[1]}mm'] for x in outputs]).sum() / mask_sum
mean_acc_4mm = torch.stack([x[f'val_acc_{self.eval_metric[2]}mm'] for x in outputs]).sum() / mask_sum
self.log('val/d_loss_r', mean_d_loss_r, prog_bar=False)
self.log('val/PSNR', mean_psnr, prog_bar=False)
self.log('val/abs_err', mean_abs_err, prog_bar=False)
self.log(f'val/acc_{self.eval_metric[0]}mm', mean_acc_1mm, prog_bar=False)
self.log(f'val/acc_{self.eval_metric[1]}mm', mean_acc_2mm, prog_bar=False)
self.log(f'val/acc_{self.eval_metric[2]}mm', mean_acc_4mm, prog_bar=False)
return
def save_ckpt(self, name='latest'):
save_dir = f'runs_new/{self.args.expname}/ckpts/'
os.makedirs(save_dir, exist_ok=True)
path = f'{save_dir}/{name}.tar'
ckpt = {
'global_step': self.global_step,
'network_fn_state_dict': self.render_kwargs_train['network_fn'].state_dict(),
'network_mvs_state_dict': self.MVSNet.state_dict()}
if self.render_kwargs_train['network_fine'] is not None:
ckpt['network_fine_state_dict'] = self.render_kwargs_train['network_fine'].state_dict()
torch.save(ckpt, path)
print('Saved checkpoints at', path)
if __name__ == '__main__':
torch.set_default_dtype(torch.float32)
args = config_parser()
system = MVSSystem(args)
checkpoint_callback = ModelCheckpoint(os.path.join(f'runs_new/{args.expname}/ckpts/','{epoch:02d}'),
monitor='val/PSNR',
mode='max',
save_top_k=0)
logger = loggers.TestTubeLogger(
save_dir="runs_new",
name=args.expname,
debug=False,
create_git_tag=False
)
args.num_gpus, args.use_amp = 1, False
trainer = Trainer(max_epochs=args.num_epochs,
checkpoint_callback=checkpoint_callback,
logger=logger,
weights_summary=None,
progress_bar_refresh_rate=1,
gpus=args.num_gpus,
distributed_backend='ddp' if args.num_gpus > 1 else None,
num_sanity_val_steps=1,
check_val_every_n_epoch = max(system.args.num_epochs//system.args.N_vis,1),
benchmark=True,
precision=16 if args.use_amp else 32,
amp_level='O1')
trainer.fit(system)
system.save_ckpt()
torch.cuda.empty_cache()