forked from DimaKudosh/pydfs-lineup-optimizer
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgenerate_draftstars_lineups.py
60 lines (52 loc) · 2.15 KB
/
generate_draftstars_lineups.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import pandas as pd
from itertools import chain
from pydfs_lineup_optimizer import get_optimizer, Site, Sport, CSVLineupExporter
from pydfs_lineup_optimizer.player import Player
class GenerateDraftstarsLineups:
def __init__(self):
self.optimizer = get_optimizer(Site.DRAFTSTARS, Sport.AFL)
def process(self):
data = self._import_data("AFLDFSUniverses.csv")
lineup_list = list()
for i in [100, 800, 1500, 2200, 2900, 3600, 4300, 5000, 5700, 6400, 7100, 7800, 8500, 9200, 9900]:
print("Processing lineup " + str(i))
optimizer = get_optimizer(Site.DRAFTSTARS, Sport.AFL)
players = self._create_player_list(data, i)
optimizer.load_players(players)
lineup = optimizer.optimize(n=1)
lineup_list.append(lineup)
return lineup_list
@staticmethod
def _create_player_list(data, universe):
data = data[["draftstarsID",
"playerName",
"draftstarsPosition",
"draftstarsPosition2",
"team",
"dsSalary",
str(universe)]]
players = list()
for index, row in data.iterrows():
player = Player(
row["draftstarsID"],
row['playerName'].split(" ")[0],
row['playerName'].split(" ")[1],
[row['draftstarsPosition']] if str(row['draftstarsPosition2']) == "nan" else [row['draftstarsPosition'],
row['draftstarsPosition2']],
row["team"],
row["dsSalary"],
row[str(universe)]
)
players.append(player)
return players
@staticmethod
def _import_data(filename):
data = pd.read_csv(filename)
return data
if __name__ == "__main__":
generator = GenerateDraftstarsLineups()
lineups = generator.process()
lineup_generator = chain.from_iterable(lineups)
exporter = CSVLineupExporter(lineup_generator)
exporter.export("universeLineups.csv")
print("CSV exported")