From 782c29e60add188ec59011d0170f47b47e8304ee Mon Sep 17 00:00:00 2001 From: EunTaik Lee Date: Wed, 24 Mar 2021 22:32:59 +0900 Subject: [PATCH 1/2] [frontend][tflite] float16 quant support --- python/tvm/relay/frontend/tflite.py | 35 +- tests/python/frontend/tflite/test_forward.py | 459 +++++++++++++------ 2 files changed, 348 insertions(+), 146 deletions(-) diff --git a/python/tvm/relay/frontend/tflite.py b/python/tvm/relay/frontend/tflite.py index a5c9a586e275..9413f78da611 100644 --- a/python/tvm/relay/frontend/tflite.py +++ b/python/tvm/relay/frontend/tflite.py @@ -1882,9 +1882,12 @@ def convert_fully_connected(self, op): # bias tensor type should be INT32 (quantization) or FLOAT32 assert bias_tensor_type in (TensorType.INT32, TensorType.FLOAT32) bias_tensor_type_str = self.get_tensor_type_str(bias_tensor_type) - bias_expr = self.exp_tab.new_const( - self.get_tensor_value(bias_tensor), dtype=bias_tensor_type_str - ) + if self.has_expr(bias_tensor.tensor_idx): + bias_expr = self.get_expr(bias_tensor.tensor_idx) + else: + bias_expr = self.exp_tab.new_const( + self.get_tensor_value(bias_tensor), dtype=bias_tensor_type_str + ) out = _op.nn.bias_add(out, bias_expr) # Finally if the dense is quantized. Add a requantize at the end. @@ -2852,11 +2855,18 @@ def convert_transpose_conv(self, op): # weights tensor type should be UINT8 (quantization) or FLOAT32 assert weights_tensor_type in (TensorType.INT8, TensorType.UINT8, TensorType.FLOAT32) weight_tensor_type_str = self.get_tensor_type_str(weights_tensor_type) - weight_value_ohwi = self.get_tensor_value(weights_tensor) - # Relay kernel_layout should be OIHW - # Relay weights layout should be different from kernel_layout - it should be IOHW - weight_value_iohw = np.transpose(weight_value_ohwi, (3, 0, 1, 2)) - weight_expr_iohw = self.exp_tab.new_const(weight_value_iohw, dtype=weight_tensor_type_str) + + if self.has_expr(weights_tensor.tensor_idx): + weight_expr_iohw = self.get_expr(weights_tensor.tensor_idx) + weight_expr_iohw = _op.transpose(weight_expr_iohw, axes=(3, 0, 1, 2)) + else: + weight_value_ohwi = self.get_tensor_value(weights_tensor) + # Relay kernel_layout should be OIHW + # Relay weights layout should be different from kernel_layout - it should be IOHW + weight_value_iohw = np.transpose(weight_value_ohwi, (3, 0, 1, 2)) + weight_expr_iohw = self.exp_tab.new_const( + weight_value_iohw, dtype=weight_tensor_type_str + ) # Output shape value output_shape_value = self.get_tensor_value(output_shape_tensor) @@ -2912,9 +2922,12 @@ def convert_transpose_conv(self, op): # bias tensor type should be INT32 (quantization) or FLOAT32 assert bias_tensor_type in (TensorType.INT32, TensorType.FLOAT32) bias_tensor_type_str = self.get_tensor_type_str(bias_tensor_type) - bias_expr = self.exp_tab.new_const( - self.get_tensor_value(bias_tensor), dtype=bias_tensor_type_str - ) + if self.has_expr(bias_tensor.tensor_idx): + bias_expr = self.get_expr(bias_tensor.tensor_idx) + else: + bias_expr = self.exp_tab.new_const( + self.get_tensor_value(bias_tensor), dtype=bias_tensor_type_str + ) channel_axis = 3 out = _op.nn.bias_add(out, bias_expr, axis=channel_axis) diff --git a/tests/python/frontend/tflite/test_forward.py b/tests/python/frontend/tflite/test_forward.py index 7c12cd3365ca..9c32ed3789b4 100644 --- a/tests/python/frontend/tflite/test_forward.py +++ b/tests/python/frontend/tflite/test_forward.py @@ -266,6 +266,7 @@ def compare_tflite_with_tvm( input_range=None, mode="graph_runtime", experimental_new_converter=False, + fp16_quantized=False, ): """Generic function to generate and compare TFLite and TVM output""" in_data = convert_to_list(in_data) @@ -298,6 +299,9 @@ def compare_tflite_with_tvm( mean = -input_range[i][0] * quant_scale input_stats[i] = (mean, quant_scale) converter.quantized_input_stats = input_stats + elif fp16_quantized: + converter.optimizations = [tf.lite.Optimize.DEFAULT] + converter.target_spec.supported_types = [tf.float16] tflite_model_buffer = converter.convert() tflite_output = run_tflite_graph(tflite_model_buffer, in_data) @@ -944,6 +948,7 @@ def _test_convolution( data_format, is_depthwise=False, quantized=False, + fp16_quantized=False, ): """ One iteration of convolution with given shapes and attributes """ @@ -979,7 +984,7 @@ def _test_convolution( in_data, in_filter, strides=strides, padding=padding, data_format=data_format ) - if quantized: + if quantized and not fp16_quantized: if is_depthwise: # Quantized the inputs and feed them to the convolution inq_data = tf.quantization.fake_quant_with_min_max_args( @@ -1035,6 +1040,7 @@ def _test_convolution( quantized=quantized, input_range=input_range, experimental_new_converter=True, + fp16_quantized=fp16_quantized, ) else: data_array = np.reshape(data_array, tensor_in_sizes).astype("float32") @@ -1043,74 +1049,118 @@ def _test_convolution( def test_forward_convolution(): for quantized in [False, True]: - _test_convolution( - [4, 8, 8, 176], [1, 1, 176, 32], [1, 1], [1, 1], "SAME", "NHWC", quantized=quantized - ) - _test_convolution( - [4, 17, 17, 19], [3, 3, 19, 19], [1, 1], [2, 2], "VALID", "NHWC", quantized=quantized - ) - _test_convolution( - [4, 17, 17, 124], [1, 1, 124, 19], [1, 1], [1, 1], "SAME", "NHWC", quantized=quantized - ) - _test_convolution( - [4, 17, 17, 12], [3, 3, 12, 32], [1, 1], [2, 2], "VALID", "NHWC", quantized=quantized - ) + for fp16_quantized in [False, True]: + if quantized and fp16_quantized: + continue + _test_convolution( + [4, 8, 8, 176], + [1, 1, 176, 32], + [1, 1], + [1, 1], + "SAME", + "NHWC", + quantized=quantized, + fp16_quantized=fp16_quantized, + ) + _test_convolution( + [4, 17, 17, 19], + [3, 3, 19, 19], + [1, 1], + [2, 2], + "VALID", + "NHWC", + quantized=quantized, + fp16_quantized=fp16_quantized, + ) + _test_convolution( + [4, 17, 17, 124], + [1, 1, 124, 19], + [1, 1], + [1, 1], + "SAME", + "NHWC", + quantized=quantized, + fp16_quantized=fp16_quantized, + ) + _test_convolution( + [4, 17, 17, 12], + [3, 3, 12, 32], + [1, 1], + [2, 2], + "VALID", + "NHWC", + quantized=quantized, + fp16_quantized=fp16_quantized, + ) - # depthwise convolution - _test_convolution( - [4, 8, 8, 176], - [1, 1, 176, 1], - [1, 1], - [1, 1], - "SAME", - "NHWC", - True, - quantized=quantized, - ) - _test_convolution( - [4, 17, 17, 19], - [3, 3, 19, 1], - [1, 1], - [2, 2], - "VALID", - "NHWC", - True, - quantized=quantized, - ) - _test_convolution( - [4, 17, 17, 124], - [1, 1, 124, 1], - [1, 1], - [1, 1], - "SAME", - "NHWC", - True, - quantized=quantized, - ) - _test_convolution( - [4, 17, 17, 12], - [3, 3, 12, 1], - [1, 1], - [2, 2], - "VALID", - "NHWC", - True, - quantized=quantized, - ) - _test_convolution( - [4, 17, 17, 12], - [3, 3, 12, 2], - [1, 1], - [2, 2], - "VALID", - "NHWC", - True, - quantized=quantized, - ) - # depthwise convolution with single input channel - _test_convolution( - [1, 76, 64, 1], [9, 5, 1, 96], [1, 1], [1, 1], "SAME", "NHWC", True, quantized=quantized - ) + # depthwise convolution + _test_convolution( + [4, 8, 8, 176], + [1, 1, 176, 1], + [1, 1], + [1, 1], + "SAME", + "NHWC", + True, + quantized=quantized, + fp16_quantized=fp16_quantized, + ) + _test_convolution( + [4, 17, 17, 19], + [3, 3, 19, 1], + [1, 1], + [2, 2], + "VALID", + "NHWC", + True, + quantized=quantized, + fp16_quantized=fp16_quantized, + ) + _test_convolution( + [4, 17, 17, 124], + [1, 1, 124, 1], + [1, 1], + [1, 1], + "SAME", + "NHWC", + True, + quantized=quantized, + fp16_quantized=fp16_quantized, + ) + _test_convolution( + [4, 17, 17, 12], + [3, 3, 12, 1], + [1, 1], + [2, 2], + "VALID", + "NHWC", + True, + quantized=quantized, + fp16_quantized=fp16_quantized, + ) + _test_convolution( + [4, 17, 17, 12], + [3, 3, 12, 2], + [1, 1], + [2, 2], + "VALID", + "NHWC", + True, + quantized=quantized, + fp16_quantized=fp16_quantized, + ) + # depthwise convolution with single input channel + _test_convolution( + [1, 76, 64, 1], + [9, 5, 1, 96], + [1, 1], + [1, 1], + "SAME", + "NHWC", + True, + quantized=quantized, + fp16_quantized=fp16_quantized, + ) # TFLite2 quantized convolution testing if package_version.parse(tf.VERSION) >= package_version.parse("2.3.0"): @@ -1143,7 +1193,13 @@ def test_forward_convolution(): def _test_transpose_conv( - tensor_in_sizes, filter_in_sizes, output_shape, strides, padding, quantized=False + tensor_in_sizes, + filter_in_sizes, + output_shape, + strides, + padding, + quantized=False, + fp16_quantized=False, ): """ One iteration of transpose convolution with given shapes and attributes """ @@ -1155,7 +1211,7 @@ def _test_transpose_conv( total_size_2 *= s with tf.Graph().as_default(): - if quantized: + if quantized and not fp16_quantized: # Initializes the input tensor with array containing incrementing # numbers from 1. data_array = [max(f, 255) for f in range(1, total_size_1 + 1)] @@ -1201,76 +1257,189 @@ def _test_transpose_conv( in_data, in_filter, output_shape=output_shape, strides=strides, padding=padding ) data_array = np.reshape(data_array, tensor_in_sizes).astype("float32") - compare_tflite_with_tvm([data_array], ["in_data"], [in_data], [out]) + compare_tflite_with_tvm( + [data_array], ["in_data"], [in_data], [out], fp16_quantized=fp16_quantized + ) def test_forward_transpose_conv(): for quantized in [True, False]: - # kernel 3x3, padding VALID - _test_transpose_conv( - [4, 32, 32, 16], [3, 3, 5, 16], [4, 34, 34, 5], [1, 1], "VALID", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [3, 3, 5, 16], [1, 65, 65, 5], [2, 2], "VALID", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [3, 3, 5, 16], [1, 65, 34, 5], [2, 1], "VALID", quantized - ) + for fp16_quantized in [True, False]: + if quantized and fp16_quantized: + continue + # kernel 3x3, padding VALID + _test_transpose_conv( + [4, 32, 32, 16], + [3, 3, 5, 16], + [4, 34, 34, 5], + [1, 1], + "VALID", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [3, 3, 5, 16], + [1, 65, 65, 5], + [2, 2], + "VALID", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [3, 3, 5, 16], + [1, 65, 34, 5], + [2, 1], + "VALID", + quantized, + fp16_quantized, + ) - # kernel 3x3, padding SAME - _test_transpose_conv( - [4, 32, 32, 16], [3, 3, 5, 16], [4, 32, 32, 5], [1, 1], "SAME", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [3, 3, 5, 16], [1, 64, 64, 5], [2, 2], "SAME", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [3, 3, 5, 16], [1, 64, 32, 5], [2, 1], "SAME", quantized - ) + # kernel 3x3, padding SAME + _test_transpose_conv( + [4, 32, 32, 16], + [3, 3, 5, 16], + [4, 32, 32, 5], + [1, 1], + "SAME", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [3, 3, 5, 16], + [1, 64, 64, 5], + [2, 2], + "SAME", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [3, 3, 5, 16], + [1, 64, 32, 5], + [2, 1], + "SAME", + quantized, + fp16_quantized, + ) - # kernel 2x2, padding VALID - _test_transpose_conv( - [4, 32, 32, 16], [2, 2, 5, 16], [4, 33, 33, 5], [1, 1], "VALID", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 64, 5], [2, 2], "VALID", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 33, 5], [2, 1], "VALID", quantized - ) + # kernel 2x2, padding VALID + _test_transpose_conv( + [4, 32, 32, 16], + [2, 2, 5, 16], + [4, 33, 33, 5], + [1, 1], + "VALID", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [2, 2, 5, 16], + [1, 64, 64, 5], + [2, 2], + "VALID", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [2, 2, 5, 16], + [1, 64, 33, 5], + [2, 1], + "VALID", + quantized, + fp16_quantized, + ) - # kernel 2x2, padding SAME - _test_transpose_conv( - [4, 32, 32, 16], [2, 2, 5, 16], [4, 32, 32, 5], [1, 1], "SAME", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 64, 5], [2, 2], "SAME", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [2, 2, 5, 16], [1, 64, 32, 5], [2, 1], "SAME", quantized - ) + # kernel 2x2, padding SAME + _test_transpose_conv( + [4, 32, 32, 16], + [2, 2, 5, 16], + [4, 32, 32, 5], + [1, 1], + "SAME", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [2, 2, 5, 16], + [1, 64, 64, 5], + [2, 2], + "SAME", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [2, 2, 5, 16], + [1, 64, 32, 5], + [2, 1], + "SAME", + quantized, + fp16_quantized, + ) - # kernel 1x1, padding VALID - _test_transpose_conv( - [4, 32, 32, 16], [1, 1, 5, 16], [4, 32, 32, 5], [1, 1], "VALID", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 63, 5], [2, 2], "VALID", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 32, 5], [2, 1], "VALID", quantized - ) + # kernel 1x1, padding VALID + _test_transpose_conv( + [4, 32, 32, 16], + [1, 1, 5, 16], + [4, 32, 32, 5], + [1, 1], + "VALID", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [1, 1, 5, 16], + [1, 63, 63, 5], + [2, 2], + "VALID", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [1, 1, 5, 16], + [1, 63, 32, 5], + [2, 1], + "VALID", + quantized, + fp16_quantized, + ) - # kernel 1x1, padding SAME - _test_transpose_conv( - [4, 32, 32, 16], [1, 1, 5, 16], [4, 32, 32, 5], [1, 1], "SAME", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 63, 5], [2, 2], "SAME", quantized - ) - _test_transpose_conv( - [1, 32, 32, 16], [1, 1, 5, 16], [1, 63, 32, 5], [2, 1], "SAME", quantized - ) + # kernel 1x1, padding SAME + _test_transpose_conv( + [4, 32, 32, 16], + [1, 1, 5, 16], + [4, 32, 32, 5], + [1, 1], + "SAME", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [1, 1, 5, 16], + [1, 63, 63, 5], + [2, 2], + "SAME", + quantized, + fp16_quantized, + ) + _test_transpose_conv( + [1, 32, 32, 16], + [1, 1, 5, 16], + [1, 63, 32, 5], + [2, 1], + "SAME", + quantized, + fp16_quantized, + ) ####################################################################### @@ -3370,7 +3539,12 @@ def test_forward_sparse_to_dense(): # Fully Connected # --------------- def _test_fully_connected( - tensor_in_sizes, const_input, filter_in_sizes, bias_in_size=None, quantized=False + tensor_in_sizes, + const_input, + filter_in_sizes, + bias_in_size=None, + quantized=False, + fp16_quantized=False, ): """ One iteration of fully connected """ @@ -3405,7 +3579,7 @@ def _test_fully_connected( ) in_bias = constant_op.constant(bias_array, shape=bias_in_size, dtype=np.float32) - if quantized: + if quantized and not fp16_quantized: inq_data = tf.quantization.fake_quant_with_min_max_args( in_data, min=-100, max=100, name="inq_0" ) @@ -3442,7 +3616,12 @@ def _test_fully_connected( out = nn_ops.bias_add(out, in_bias) compare_tflite_with_tvm( - data_array, in_data.name, [in_data], [out], experimental_new_converter=True + data_array, + in_data.name, + [in_data], + [out], + experimental_new_converter=True, + fp16_quantized=fp16_quantized, ) @@ -3461,7 +3640,17 @@ def test_forward_fully_connected(): ]: for const_input in [False, True]: for quantized in [False, True]: - _test_fully_connected(input_shape, const_input, weight_shape, bias_shape, quantized) + for fp16_quantized in [False, True]: + if quantized and fp16_quantized: + continue + _test_fully_connected( + input_shape, + const_input, + weight_shape, + bias_shape, + quantized, + fp16_quantized, + ) ####################################################################### From 9c28870903fc6d4f36da948eba19cbdc4a7b14ca Mon Sep 17 00:00:00 2001 From: EunTaik Lee Date: Fri, 16 Apr 2021 02:45:20 +0900 Subject: [PATCH 2/2] remove skip conditions in tests --- tests/python/frontend/tflite/test_forward.py | 16 +++++++--------- 1 file changed, 7 insertions(+), 9 deletions(-) diff --git a/tests/python/frontend/tflite/test_forward.py b/tests/python/frontend/tflite/test_forward.py index 9c32ed3789b4..020d906db816 100644 --- a/tests/python/frontend/tflite/test_forward.py +++ b/tests/python/frontend/tflite/test_forward.py @@ -325,7 +325,7 @@ def compare_tflite_with_tvm( # WARNING: the results could well be random values clipped to 0 or 255 because of badly tuned output # range for the specific operator. While adding test ensure that we aren't getting only clipped values # in output tensors that still pass the assertion. For reference see _test_elemwise_qnn_out_range() - if quantized: + if quantized and not fp16_quantized: for i in range(len(tflite_output)): # allow absolute tolerance of 1 in the quantized results tvm.testing.assert_allclose(tflite_output[i], tvm_output[i], atol=1, rtol=1e-5) @@ -1050,8 +1050,6 @@ def _test_convolution( def test_forward_convolution(): for quantized in [False, True]: for fp16_quantized in [False, True]: - if quantized and fp16_quantized: - continue _test_convolution( [4, 8, 8, 176], [1, 1, 176, 32], @@ -1265,8 +1263,6 @@ def _test_transpose_conv( def test_forward_transpose_conv(): for quantized in [True, False]: for fp16_quantized in [True, False]: - if quantized and fp16_quantized: - continue # kernel 3x3, padding VALID _test_transpose_conv( [4, 32, 32, 16], @@ -3557,8 +3553,12 @@ def _test_fully_connected( # Initializes the input tensor with array containing incrementing # numbers from 1. - data_array = np.arange(1, total_size_1 + 1, dtype=np.uint8 if quantized else np.float32) - filter_array = np.arange(1, total_size_2 + 1, dtype=np.uint8 if quantized else np.float32) + data_array = np.arange( + 1, total_size_1 + 1, dtype=np.uint8 if quantized and not fp16_quantized else np.float32 + ) + filter_array = np.arange( + 1, total_size_2 + 1, dtype=np.uint8 if quantized and not fp16_quantized else np.float32 + ) in_name = "input" with tf.Graph().as_default(): @@ -3641,8 +3641,6 @@ def test_forward_fully_connected(): for const_input in [False, True]: for quantized in [False, True]: for fp16_quantized in [False, True]: - if quantized and fp16_quantized: - continue _test_fully_connected( input_shape, const_input,