From c15405c78345e9a46549a398c6b59bed80274f9e Mon Sep 17 00:00:00 2001 From: Travis Galoppo Date: Thu, 30 Oct 2014 14:50:47 -0400 Subject: [PATCH] SPARK-4156 --- .../spark/examples/mllib/DenseGmmEM.scala | 47 ++++ .../GMMExpectationMaximization.scala | 246 ++++++++++++++++++ .../clustering/GaussianMixtureModel.scala | 32 +++ 3 files changed, 325 insertions(+) create mode 100644 examples/src/main/scala/org/apache/spark/examples/mllib/DenseGmmEM.scala create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/clustering/GMMExpectationMaximization.scala create mode 100644 mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixtureModel.scala diff --git a/examples/src/main/scala/org/apache/spark/examples/mllib/DenseGmmEM.scala b/examples/src/main/scala/org/apache/spark/examples/mllib/DenseGmmEM.scala new file mode 100644 index 0000000000000..4272280b261ea --- /dev/null +++ b/examples/src/main/scala/org/apache/spark/examples/mllib/DenseGmmEM.scala @@ -0,0 +1,47 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.examples.mllib + +import org.apache.spark.{SparkConf, SparkContext} +import org.apache.spark.mllib.clustering.GaussianMixtureModel +import org.apache.spark.mllib.clustering.GMMExpectationMaximization +import org.apache.spark.mllib.linalg.Vectors + +object DenseGmmEM { + def main(args: Array[String]): Unit = { + if( args.length != 3 ) { + println("usage: DenseGmmEM ") + } else { + run(args(0), args(1).toInt, args(2).toDouble) + } + } + + def run(inputFile: String, k: Int, tol: Double) { + val conf = new SparkConf().setAppName("Spark EM Sample") + val ctx = new SparkContext(conf) + + val data = ctx.textFile(inputFile).map(line => + Vectors.dense(line.trim.split(' ').map(_.toDouble))).cache() + + val clusters = GMMExpectationMaximization.train(data, k) + + for(i <- 0 until clusters.k) { + println("w=%f mu=%s sigma=\n%s\n" format (clusters.w(i), clusters.mu(i), clusters.sigma(i))) + } + } +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/GMMExpectationMaximization.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/GMMExpectationMaximization.scala new file mode 100644 index 0000000000000..9b4d5de65f200 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/GMMExpectationMaximization.scala @@ -0,0 +1,246 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.clustering + +import breeze.linalg.{DenseVector => BreezeVector, DenseMatrix => BreezeMatrix} +import breeze.linalg.{Transpose, det, inv} +import org.apache.spark.rdd.RDD +import org.apache.spark.mllib.linalg.{Matrices, Vector, Vectors} +import org.apache.spark.{Accumulator, AccumulatorParam, SparkContext} +import org.apache.spark.SparkContext.DoubleAccumulatorParam + +/** + * Expectation-Maximization for multivariate Gaussian Mixture Models. + * + */ +object GMMExpectationMaximization { + /** + * Trains a GMM using the given parameters + * + * @param data training points stores as RDD[Vector] + * @param k the number of Gaussians in the mixture + * @param maxIterations the maximum number of iterations to perform + * @param delta change in log-likelihood at which convergence is considered achieved + */ + def train(data: RDD[Vector], k: Int, maxIterations: Int, delta: Double): GaussianMixtureModel = { + new GMMExpectationMaximization().setK(k) + .setMaxIterations(maxIterations) + .setDelta(delta) + .run(data) + } + + /** + * Trains a GMM using the given parameters + * + * @param data training points stores as RDD[Vector] + * @param k the number of Gaussians in the mixture + * @param maxIterations the maximum number of iterations to perform + */ + def train(data: RDD[Vector], k: Int, maxIterations: Int): GaussianMixtureModel = { + new GMMExpectationMaximization().setK(k).setMaxIterations(maxIterations).run(data) + } + + /** + * Trains a GMM using the given parameters + * + * @param data training points stores as RDD[Vector] + * @param k the number of Gaussians in the mixture + */ + def train(data: RDD[Vector], k: Int): GaussianMixtureModel = { + new GMMExpectationMaximization().setK(k).run(data) + } +} + +/** + * This class performs multivariate Gaussian expectation maximization. It will + * maximize the log-likelihood for a mixture of k Gaussians, iterating until + * the log-likelihood changes by less than delta, or until it has reached + * the max number of iterations. + */ +class GMMExpectationMaximization private ( + private var k: Int, + private var delta: Double, + private var maxIterations: Int) extends Serializable { + + // Type aliases for convenience + private type DenseDoubleVector = BreezeVector[Double] + private type DenseDoubleMatrix = BreezeMatrix[Double] + + // A default instance, 2 Gaussians, 100 iterations, 0.01 log-likelihood threshold + def this() = this(2, 0.01, 100) + + /** Set the number of Gaussians in the mixture model. Default: 2 */ + def setK(k: Int): this.type = { + this.k = k + this + } + + /** Set the maximum number of iterations to run. Default: 100 */ + def setMaxIterations(maxIterations: Int): this.type = { + this.maxIterations = maxIterations + this + } + + /** + * Set the largest change in log-likelihood at which convergence is + * considered to have occurred. + */ + def setDelta(delta: Double): this.type = { + this.delta = delta + this + } + + /** Machine precision value used to ensure matrix conditioning */ + private val eps = math.pow(2.0, -52) + + /** Perform expectation maximization */ + def run(data: RDD[Vector]): GaussianMixtureModel = { + val ctx = data.sparkContext + + // we will operate on the data as breeze data + val breezeData = data.map{ u => u.toBreeze.toDenseVector }.cache() + + // Get length of the input vectors + val d = breezeData.first.length + + // For each Gaussian, we will initialize the mean as some random + // point from the data. (This could be improved) + val samples = breezeData.takeSample(true, k, scala.util.Random.nextInt) + + // C will be array of (weight, mean, covariance) tuples + // we start with uniform weights, a random mean from the data, and + // identity matrices for covariance + var C = (0 until k).map(i => (1.0/k, + samples(i), + BreezeMatrix.eye[Double](d))).toArray + + val acc_w = new Array[Accumulator[Double]](k) + val acc_mu = new Array[Accumulator[DenseDoubleVector]](k) + val acc_sigma = new Array[Accumulator[DenseDoubleMatrix]](k) + + var llh = Double.MinValue // current log-likelihood + var llhp = 0.0 // previous log-likelihood + + var i, iter = 0 + do { + // reset accumulators + for(i <- 0 until k){ + acc_w(i) = ctx.accumulator(0.0) + acc_mu(i) = ctx.accumulator( + BreezeVector.zeros[Double](d))(DenseDoubleVectorAccumulatorParam) + acc_sigma(i) = ctx.accumulator( + BreezeMatrix.zeros[Double](d,d))(DenseDoubleMatrixAccumulatorParam) + } + + val log_likelihood = ctx.accumulator(0.0) + + // broadcast the current weights and distributions to all nodes + val dists = ctx.broadcast((0 until k).map(i => + new MultivariateGaussian(C(i)._2, C(i)._3)).toArray) + val weights = ctx.broadcast((0 until k).map(i => C(i)._1).toArray) + + // calculate partial assignments for each sample in the data + // (often referred to as the "E" step in literature) + breezeData.foreach(x => { + val p = (0 until k).map(i => + eps + weights.value(i) * dists.value(i).pdf(x)).toArray + val norm = sum(p) + + log_likelihood += math.log(norm) + + // accumulate weighted sums + for(i <- 0 until k){ + p(i) /= norm + acc_w(i) += p(i) + acc_mu(i) += x * p(i) + acc_sigma(i) += x * new Transpose(x) * p(i) + } + }) + + // Collect the computed sums + val W = (0 until k).map(i => acc_w(i).value).toArray + val MU = (0 until k).map(i => acc_mu(i).value).toArray + val SIGMA = (0 until k).map(i => acc_sigma(i).value).toArray + + // Create new distributions based on the partial assignments + // (often referred to as the "M" step in literature) + C = (0 until k).map(i => { + val weight = W(i) / sum(W) + val mu = MU(i) / W(i) + val sigma = SIGMA(i) / W(i) - mu * new Transpose(mu) + (weight, mu, sigma) + }).toArray + + llhp = llh; // current becomes previous + llh = log_likelihood.value // this is the freshly computed log-likelihood + iter += 1 + } while(iter < maxIterations && Math.abs(llh-llhp) > delta) + + // Need to convert the breeze matrices to MLlib matrices + val weights = (0 until k).map(i => C(i)._1).toArray + val means = (0 until k).map(i => Vectors.fromBreeze(C(i)._2)).toArray + val sigmas = (0 until k).map(i => Matrices.fromBreeze(C(i)._3)).toArray + new GaussianMixtureModel(weights, means, sigmas) + } + + /** Sum the values in array of doubles */ + private def sum(x : Array[Double]) : Double = { + var s : Double = 0.0 + x.foreach(u => s += u) + s + } + + /** AccumulatorParam for Dense Breeze Vectors */ + private object DenseDoubleVectorAccumulatorParam extends AccumulatorParam[DenseDoubleVector] { + def zero(initialVector : DenseDoubleVector) : DenseDoubleVector = { + BreezeVector.zeros[Double](initialVector.length) + } + + def addInPlace(a : DenseDoubleVector, b : DenseDoubleVector) : DenseDoubleVector = { + a += b + } + } + + /** AccumulatorParam for Dense Breeze Matrices */ + private object DenseDoubleMatrixAccumulatorParam extends AccumulatorParam[DenseDoubleMatrix] { + def zero(initialVector : DenseDoubleMatrix) : DenseDoubleMatrix = { + BreezeMatrix.zeros[Double](initialVector.rows, initialVector.cols) + } + + def addInPlace(a : DenseDoubleMatrix, b : DenseDoubleMatrix) : DenseDoubleMatrix = { + a += b + } + } + + /** + * Utility class to implement the density function for multivariate Gaussian distribution. + * Breeze provides this functionality, but it requires the Apache Commons Math library, + * so this class is here so-as to not introduce a new dependency in Spark. + */ + private class MultivariateGaussian(val mu : DenseDoubleVector, val sigma : DenseDoubleMatrix) + extends Serializable { + private val sigma_inv_2 = inv(sigma) * -0.5 + private val U = math.pow(2.0*math.Pi, -mu.length/2.0) * math.pow(det(sigma), -0.5) + + def pdf(x : DenseDoubleVector) : Double = { + val delta = x - mu + val delta_t = new Transpose(delta) + U * math.exp(delta_t * sigma_inv_2 * delta) + } + } +} diff --git a/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixtureModel.scala b/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixtureModel.scala new file mode 100644 index 0000000000000..b36123366c9a8 --- /dev/null +++ b/mllib/src/main/scala/org/apache/spark/mllib/clustering/GaussianMixtureModel.scala @@ -0,0 +1,32 @@ +/* + * Licensed to the Apache Software Foundation (ASF) under one or more + * contributor license agreements. See the NOTICE file distributed with + * this work for additional information regarding copyright ownership. + * The ASF licenses this file to You under the Apache License, Version 2.0 + * (the "License"); you may not use this file except in compliance with + * the License. You may obtain a copy of the License at + * + * http://www.apache.org/licenses/LICENSE-2.0 + * + * Unless required by applicable law or agreed to in writing, software + * distributed under the License is distributed on an "AS IS" BASIS, + * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. + * See the License for the specific language governing permissions and + * limitations under the License. + */ + +package org.apache.spark.mllib.clustering + +import org.apache.spark.mllib.linalg.Matrix +import org.apache.spark.mllib.linalg.Vector + +/** + * Multivariate Gaussian mixture model consisting of k Gaussians, where points are drawn + * from each Gaussian i=1..k with probability w(i); mu(i) and sigma(i) are the respective + * mean and covariance for each Gaussian distribution i=1..k. + */ +class GaussianMixtureModel(val w: Array[Double], val mu: Array[Vector], val sigma: Array[Matrix]) { + + /** Number of gaussians in mixture */ + def k: Int = w.length; +}