-
Notifications
You must be signed in to change notification settings - Fork 3.6k
/
Copy pathdataframe.py
190 lines (171 loc) · 7.25 KB
/
dataframe.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.
from __future__ import annotations
from typing import (
Any,
Iterable,
Optional,
Sequence,
)
import pyarrow as pa
from pyarrow.interchange.column import _PyArrowColumn
class _PyArrowDataFrame:
"""
A data frame class, with only the methods required by the interchange
protocol defined.
A "data frame" represents an ordered collection of named columns.
A column's "name" must be a unique string.
Columns may be accessed by name or by position.
This could be a public data frame class, or an object with the methods and
attributes defined on this DataFrame class could be returned from the
``__dataframe__`` method of a public data frame class in a library adhering
to the dataframe interchange protocol specification.
"""
def __init__(
self, df: pa.Table, nan_as_null: bool = False, allow_copy: bool = True
) -> None:
"""
Constructor - an instance of this (private) class is returned from
`pa.Table.__dataframe__`.
"""
self._df = df
# ``nan_as_null`` is a keyword intended for the consumer to tell the
# producer to overwrite null values in the data with ``NaN`` (or
# ``NaT``). This currently has no effect; once support for nullable
# extension dtypes is added, this value should be propagated to
# columns.
self._nan_as_null = nan_as_null
self._allow_copy = allow_copy
def __dataframe__(
self, nan_as_null: bool = False, allow_copy: bool = True
) -> _PyArrowDataFrame:
"""
Construct a new exchange object, potentially changing the parameters.
``nan_as_null`` is a keyword intended for the consumer to tell the
producer to overwrite null values in the data with ``NaN``.
It is intended for cases where the consumer does not support the bit
mask or byte mask that is the producer's native representation.
``allow_copy`` is a keyword that defines whether or not the library is
allowed to make a copy of the data. For example, copying data would be
necessary if a library supports strided buffers, given that this
protocol specifies contiguous buffers.
"""
return _PyArrowDataFrame(self._df, nan_as_null, allow_copy)
@property
def metadata(self) -> dict[str, Any]:
"""
The metadata for the data frame, as a dictionary with string keys. The
contents of `metadata` may be anything, they are meant for a library
to store information that it needs to, e.g., roundtrip losslessly or
for two implementations to share data that is not (yet) part of the
interchange protocol specification. For avoiding collisions with other
entries, please add name the keys with the name of the library
followed by a period and the desired name, e.g, ``pandas.indexcol``.
"""
# The metadata for the data frame, as a dictionary with string keys.
# Add schema metadata here (pandas metadata or custom metadata)
if self._df.schema.metadata:
schema_metadata = {"pyarrow." + k.decode('utf8'): v.decode('utf8')
for k, v in self._df.schema.metadata.items()}
return schema_metadata
else:
return {}
def num_columns(self) -> int:
"""
Return the number of columns in the DataFrame.
"""
return self._df.num_columns
def num_rows(self) -> int:
"""
Return the number of rows in the DataFrame, if available.
"""
return self._df.num_rows
def num_chunks(self) -> int:
"""
Return the number of chunks the DataFrame consists of.
"""
return self._df.column(0).num_chunks
def column_names(self) -> Iterable[str]:
"""
Return an iterator yielding the column names.
"""
return self._df.column_names
def get_column(self, i: int) -> _PyArrowColumn:
"""
Return the column at the indicated position.
"""
return _PyArrowColumn(self._df.column(i),
allow_copy=self._allow_copy)
def get_column_by_name(self, name: str) -> _PyArrowColumn:
"""
Return the column whose name is the indicated name.
"""
return _PyArrowColumn(self._df.column(name),
allow_copy=self._allow_copy)
def get_columns(self) -> Iterable[_PyArrowColumn]:
"""
Return an iterator yielding the columns.
"""
return [
_PyArrowColumn(col, allow_copy=self._allow_copy)
for col in self._df.columns
]
def select_columns(self, indices: Sequence[int]) -> _PyArrowDataFrame:
"""
Create a new DataFrame by selecting a subset of columns by index.
"""
return _PyArrowDataFrame(
self._df.select(list(indices)), self._nan_as_null, self._allow_copy
)
def select_columns_by_name(
self, names: Sequence[str]
) -> _PyArrowDataFrame:
"""
Create a new DataFrame by selecting a subset of columns by name.
"""
return _PyArrowDataFrame(
self._df.select(list(names)), self._nan_as_null, self._allow_copy
)
def get_chunks(
self, n_chunks: Optional[int] = None
) -> Iterable[_PyArrowDataFrame]:
"""
Return an iterator yielding the chunks.
By default (None), yields the chunks that the data is stored as by the
producer. If given, ``n_chunks`` must be a multiple of
``self.num_chunks()``, meaning the producer must subdivide each chunk
before yielding it.
Note that the producer must ensure that all columns are chunked the
same way.
"""
if n_chunks and n_chunks > 1:
chunk_size = self.num_rows() // n_chunks
if self.num_rows() % n_chunks != 0:
chunk_size += 1
batches = self._df.to_batches(max_chunksize=chunk_size)
# In case when the size of the chunk is such that the resulting
# list is one less chunk then n_chunks -> append an empty chunk
if len(batches) == n_chunks - 1:
batches.append(pa.record_batch([[]], schema=self._df.schema))
else:
batches = self._df.to_batches()
iterator_tables = [_PyArrowDataFrame(
pa.Table.from_batches([batch]), self._nan_as_null, self._allow_copy
)
for batch in batches
]
return iterator_tables