-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_parallel.py
336 lines (285 loc) · 12.2 KB
/
train_parallel.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
#!/usr/bin/python
#!/usr/bin/python3
# This script assume exclusive usage of the GPUs.
# If you have limited usage of GPUs, you can limit the range of gpu indices you are using.
import threading
import time
import os
import numpy as np
import random
import gpustat
import logging
import itertools
import torch
import torch.optim as optim
import argparse
import sys
from scipy import io
os.environ['OPENBLAS_NUM_THREADS'] = '1'
os.environ['MKL_NUM_THREADS'] = '1'
os.environ['MKL_SERVICE_FORCE_INTEL'] = '1'
parser = argparse.ArgumentParser(description='CIFAR-10 baseline')
parser.add_argument('--experiment_num',
default=0,
type=int,
help='serial number of the experiment')
parser.add_argument('--ip_address',
default="169.229.49.63",
type=str,
help='ip_address')
parser.add_argument('--GPU_list',
default='0123',
type=str,
help='gpu list')
parser.add_argument('--datasetid',
default=0,
type=int,
help='dataset')
args = parser.parse_args()
FORMAT = '[%(asctime)-15s %(filename)s:%(lineno)s] %(message)s'
FORMAT_MINIMAL = '%(message)s'
logger = logging.getLogger('runner')
logging.basicConfig(format=FORMAT)
logger.setLevel(logging.DEBUG)
exitFlag = 0
GPU_MEMORY_THRESHOLD = 24000 # MB?
def get_free_gpu_indices():
'''
Return an available GPU index.
'''
while True:
stats = gpustat.GPUStatCollection.new_query()
return_list = []
for i, stat in enumerate(stats.gpus):
memory_used = stat['memory.used']
if memory_used < GPU_MEMORY_THRESHOLD:
return i
logger.info("Waiting on GPUs")
time.sleep(10)
class DispatchThread(threading.Thread):
def __init__(self, threadID, name, counter, bash_command_list):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
self.bash_command_list = bash_command_list
def run(self):
# logger.info("Starting " + self.name)
threads = []
for i, bash_command in enumerate(self.bash_command_list):
cuda_device = get_free_gpu_indices()
thread1 = ChildThread(1, f"{i}th + {bash_command}", 1, cuda_device, bash_command)
thread1.start()
import time
time.sleep(10)
threads.append(thread1)
# join all.
for t in threads:
t.join()
logger.info("Exiting " + self.name)
class ChildThread(threading.Thread):
def __init__(self, threadID, name, counter, cuda_device, bash_command):
threading.Thread.__init__(self)
self.threadID = threadID
self.name = name
self.counter = counter
self.cuda_device = cuda_device
self.bash_command = bash_command
def run(self):
bash_command = self.bash_command
# ACTIVATE
os.system(bash_command)
import time
import random
time.sleep(random.random() % 5)
logger.info("Finishing " + self.name)
if args.datasetid==0:
dataset = 'cifar10'
if args.datasetid==1:
dataset = 'svhn'
if args.datasetid==2:
dataset = 'emnist'
####### run setting.py to generate Setting files for different experiments
if dataset == 'cifar10':
if not os.path.exists('./Setting/cifar/'):
comm = "python setting_cifar.py"
os.system(comm)
if dataset == 'emnist':
if not os.path.exists('./Setting/emnist/'):
comm = "python setting_emnist.py"
os.system(comm)
if dataset == 'svhn':
if not os.path.exists('./Setting/svhn/'):
comm = "python setting_svhn.py"
os.system(comm)
###### generate device_idxs server_idxs for different experiments
print(dataset,dataset=="cifar10")
if dataset == "cifar10":
size_list = [10, 20, 30]
# size_list = [30]
iid_list = [0]
basicLabelRatio_list = [0.2, 0.4, 0.6, 0.8, 1.0]
# basicLabelRatio_list = [0.4]
num_data_server_list = [1000]
class_per_device = 1
if dataset == 'emnist':
size_list = [47]
iid_list = [0,1]
basicLabelRatio_list = [0.4]
num_data_server_list = [4700]#[3100,6200]
class_per_device = 1
if dataset == 'svhn':
size_list = [10, 20, 30]
iid_list = [0,1]
basicLabelRatio_list = [0.2, 0.4, 0.6, 0.8, 1.0]
num_data_server_list = [1000]
class_per_device = 1
# Data pre-processing
for num_data_server in num_data_server_list:
for iid in iid_list:
for size in size_list:
if iid:
path_device_idxs = f'{dataset}_post_data/iid/{size}_{num_data_server}'
print(path_device_idxs)
if not os.path.exists(path_device_idxs):
comm = f"python data_precessing.py --dataset {dataset} \
--num_devices {size} \
--num_data_server {num_data_server} \
--iid {iid} \
--path_device_idxs {path_device_idxs}"
os.system(comm)
else:
for basicLabelRatio in basicLabelRatio_list:
path_device_idxs = f'{dataset}_post_data/noniid/{size}_{num_data_server}_{class_per_device}_{basicLabelRatio}'
print(path_device_idxs)
if not os.path.exists(path_device_idxs):
comm = f"python data_precessing.py --dataset {dataset} \
--num_devices {size} \
--num_data_server {num_data_server} \
--iid {iid} \
--path_device_idxs {path_device_idxs}\
--basicLabelRatio {basicLabelRatio}\
--class_per_device {class_per_device}"
os.system(comm)
BASH_COMMAND_LIST = []
##################
### load setting.npy file to get the value of parameters
if dataset == 'cifar10':
path_setting = './Setting/cifar/'
setting_list = ['Exper1_setting1', 'Exper1_setting2', 'Exper1_setting3', 'Exper1_setting4','Exper1_setting5', 'Exper1_setting6',
'Exper2_setting1', 'Exper2_setting2', 'Exper2_setting3', 'Exper2_setting4',
'Exper3_setting1', 'Exper3_setting2', 'Exper3_setting3',
'Exper4_setting1', 'Exper4_setting2', 'Exper4_setting3', 'Exper4_setting4',
'Exper5_setting1',
'Exper6_setting1']
if dataset == 'emnist':
path_setting = './Setting/emnist/'
setting_list = ['Exper1_setting1', 'Exper1_setting2', 'Exper1_setting3', 'Exper1_setting4','Exper1_setting5', 'Exper1_setting6',
'Exper2_setting1', 'Exper2_setting2', 'Exper2_setting3', 'Exper2_setting4',
'Exper3_setting1', 'Exper3_setting2', 'Exper3_setting3',
'Exper4_setting1', 'Exper4_setting2', 'Exper4_setting3', 'Exper4_setting4',
'Exper5_setting1',
'Exper6_setting1', 'Exper6_setting2']
if dataset == 'svhn':
path_setting = './Setting/svhn/'
setting_list = ['Exper1_setting1', 'Exper1_setting2', 'Exper1_setting3',
'Exper2_setting1']
setting = np.load(path_setting + setting_list[args.experiment_num] + '.npy', allow_pickle=True).item()
"""
##########
Assume the number of UEs is K
***************************************************************************************************************************************
parameters Value/meaning
size: size = K + 1 (server);
cp: cp in {2, 4, 8, 16} is frequency of communication; cp = 2 means UEs and server communicates every 2 iterations;
basicLabelRatio: basicLabelRatio in {0.1, 0.2, 0.3, 0.4, ..., 0.9, 1.0}, is the degree of data dispersion for each UE,
basicLabelRatio = 0.0 means UE has the same amount of samples in each class; basicLabelRatio = 1.0 means all samples owned
by UE belong to the same class;
model: model in {'res', 'res_gn'}; model = 'res' means we use ResNet18 + BN; model = 'res_gn' means we use ResNet18 + GN;
iid: iid in {0, 1}; iid = 1 is the IID case; iid = 0 is the Non-IID case;
num_comm_ue: num_comm_ue in {1, 2, ..., K}; a communication user number per iteration;
k_img: the number of training samples used in one epoch;
H: H in {0, 1}; use grouping-based model average method or not; H = 1 means we use grouping-based method;
GPU_list: GPU_list is a string; GPU_list = '01' means we use GPU0 and GPU1 for training;
num_data_server: num_data_server in {1000, 4000}, number of labeled samples in server
master_port: a random string; MASTER_PORT
ip_address: a string; MASTER_ADDR
For examples:
size = 10 + 1
batch_size = 64
cp = 4
basicLabelRatio = 0.4
model = 'res_gn'
iid = 0
num_comm_ue = 10
k_img = 65536
epoches = 300
H = 0
num_data_server = 1000
***************************************************************************************************************************************
"""
size = setting['size']
batch_size = setting['batch_size']
cp_list = setting['cp']
basicLabelRatio = setting['basicLabelRatio']
model_list = setting['model']
iid = setting['iid']
num_comm_ue = setting['num_comm_ue']
k_img = setting['k_img']
epoches = setting['epoches']
H = setting['H']
num_data_server = setting['num_data_server']
experiment_name = setting_list[args.experiment_num]
labeled = 0
######### GPUs
GPU_list = args.GPU_list
ip_address = args.ip_address
ue_list_epoch = [[]]*epoches
iterations_epoch = k_img//batch_size
ue_list_epoch = np.zeros((epoches,iterations_epoch,num_comm_ue+1),dtype='int32')
### If the number of communication user < K; We randomly generate a subset (ue_list) of users
if num_comm_ue < size - 1:
for e in range(epoches):
for it in range(iterations_epoch):
ue_list = np.arange(1, size).tolist()
random.shuffle(ue_list)
ue_list = [0] + random.sample(ue_list,num_comm_ue)
ue_list.sort()
ue_list = np.array(ue_list, dtype='int32')
ue_list_epoch[e,it,0:len(ue_list)] = ue_list
ue_list_epoch = np.array(ue_list_epoch, dtype='int32')
dictionary1 = {'ue_list_epoch':ue_list_epoch.tolist()}
path_ue_list_epoch = f'{dataset}_post_data/noniid/{size - 1}_{num_data_server}_{class_per_device}_{basicLabelRatio}/'
if iid:
path_ue_list_epoch = f'{dataset}_post_data/iid/{size - 1}_{num_data_server}/'
np.save(path_ue_list_epoch + "ue_list_epoch.npy", dictionary1)
### run train_LocalSGD.py to train the server model and user model
for model in model_list:
for cp in cp_list:
master_port = random.sample(range(10000,30000),1)
master_port = str(master_port[0])
BASH_COMMAND_LIST = []
for rank in range(size + H):
if H:
if rank < (size+H)//2:
lr_increase = float((size+H)//2)
lr = 0.03*lr_increase*batch_size/128.0
else:
lr_increase = float( (size+H) - (size+H)//2 )
lr = 0.03*lr_increase*batch_size/128.0
else:
lr = 0.03*(10.0+1.0)*batch_size/128.0
if dataset == 'emnist':
lr = 0.03
comm = f"setsid python train_LocalSGD.py --dataset {dataset} --model {model} \
--lr {lr} --bs {batch_size} --cp {cp} --alpha 0.6 --gmf 0.7 --basicLabelRatio {basicLabelRatio} --master_port {master_port}\
--name revised_results_e300 --ip_address {ip_address} --num_comm_ue {num_comm_ue} --num_data_server {num_data_server}\
--iid {iid} --rank {rank} --size {size + H} --backend gloo --H {H} --GPU_list {GPU_list} --labeled {labeled}\
--class_per_device {1} --num-devices {size - 1} --epoch {epoches} --experiment_name {experiment_name}"
BASH_COMMAND_LIST.append(comm)
dispatch_thread = DispatchThread(2, "Thread-2", 4, BASH_COMMAND_LIST)
# # Start new Threads
dispatch_thread.start()
dispatch_thread.join()
import time
time.sleep(5)