This repository is for the R implementation of a software monad for Quantile Regression workflows called Quantile Regression Monad (QRMon).
The R-implementation follows the Mathematica QRMon
package
"MonadicQuantileRegression.m",
[AAp1].
The Mathematica QRMon
package is extensively documented with
"A monad for Quantile Regression workflows",
[AA1].
The usage of this R implementation is explained in detail in the vignette "Rapid making of Quantile Regression workflows".
Here is how to install the package:
devtools::install_github("antononcube/QRMon-R")
Here is a workflow (pipeline) example:
qrmon <-
QRMonUnit( dfTemperatureData ) %>%
QRMonEchoDataSummary() %>%
QRMonQuantileRegression( df = 16, degree = 3, probabilities = seq(0.1,0.9,0.2) ) %>%
QRMonPlot( datePlotQ = TRUE, dateOrigin = "1900-01-01" )
There is a Domain Specific Language (DSL) parser-interpreter implemented in Raku
that can be used to generate QRMon
code using natural language commands; see
[AAr1].
[RK1] Roger Koenker, Quantile Regression, Cambridge University Press, 2005.
[RK2] Roger Koenker, "Quantile Regression in R: a vignette", (2006), CRAN.
[AA1] Anton Antonov, "A monad for Quantile Regression workflows", (2018), MathematicaForPrediction at GitHub.
[RKp1] Roger Koenker,
quantreg
,
CRAN.
[AAp1] Anton Antonov, Quantile Regression Mathematica package, (2014), MathematicaForPrediction at GitHub.
[AAp2] Anton Antonov, Monadic Quantile Regression Mathematica package, (2018), MathematicaForPrediction at GitHub.
[AAp3] Anton Antonov,
QuantileRegression
,
(2019),
Wolfram Function Repository.
[AAr1] Anton Antonov, DSL::English::QuantileRegressionWorkflows in Raku, (2020), GitHub/antononcube.
[AAv1] Anton Antonov, "Boston useR! QuantileRegression Workflows 2019-04-18", (2019), Anton Antonov at YouTube.
[AAv2] Anton Antonov, "useR! 2020: How to simplify Machine Learning workflows specifications", (2020), R Consortium at YouTube.