-
Notifications
You must be signed in to change notification settings - Fork 14
/
Copy pathGetMachineLearningDataset.m
169 lines (108 loc) · 5.08 KB
/
GetMachineLearningDataset.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
(*
Obtain and transform Mathematica machine learning datasets
Copyright (C) 2018 Anton Antonov
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
Written by Anton Antonov,
antononcube @ gmail . com,
Windermere, Florida, USA.
*)
(* :Title: GetMachineLearningDataset *)
(* :Context: GetMachineLearningDataset` *)
(* :Author: Anton Antonov *)
(* :Date: 2018-04-08 *)
(* :Package Version: 0.1 *)
(* :Mathematica Version: *)
(* :Copyright: (c) 2018 Anton Antonov *)
(* :Keywords: *)
(* :Discussion:
# In brief
This Mathematica package has a function for getting machine learning data-sets and transforming them
into Dataset objects with named rows and columns.
The purpose of the function GetMachineLearningDataset is to produce data sets that easier to deal with
in both Mathematica and R.
# Details
Some additional transformations are done do some variables for some data-sets.
For example for "Titanic" the passenger ages are rounded to multiples of 10; missing ages are given the value -1.
See below the line:
ds = ds[Map[<|#, "passengerAge" -> If[! NumberQ[#passengerAge], -1, Round[#passengerAge/10]*10]|> &]];
# Example
This gets the "Titanic" dataset:
dsTitanic = GetMachineLearningDataset["Titanic", "RowIDs" -> True];
Dimensions[dsTitanic]
(* {1309, 5} *)
Here is a summary using the package [1]:
RecordsSummary[dsTitanic[Values]]
Here is a summary in long form with the packages [1] and [2]:
smat = ToSSparseMatrix[dsTitanic];
RecordsSummary[SSparseMatrixToTriplets[smat], {"RowID", "Variable", "Value"}]
# References
[1] Anton Antonov, MathematicaForPredictionUtilities.m, (2014),
https://github.com/antononcube/MathematicaForPrediction/blob/master/MathematicaForPredictionUtilities.m
[2] Anton Antonov, SSparseMatrix.m, (2018),
https://github.com/antononcube/MathematicaForPrediction/blob/master/SSparseMatrix.m
This file was created by Mathematica Plugin for IntelliJ IDEA.
Anton Antonov
Windermere, FL, USA
2018-04-08
*)
BeginPackage["GetMachineLearningDataset`"];
GetMachineLearningDataset::usage = "GetMachineLearningDataset[dataName_String] gets data with \
ExampleData[{\"MachineLearning\", dataName}, \"Data\"] and transforms it into a Dataset object with named rows and columns. \
Some additional transformations are done do some variables for some data-sets.";
Begin["`Private`"];
Clear[GetMachineLearningDataset]
Options[GetMachineLearningDataset] = {"RowIDs" -> False, "MissingToNA" -> True};
GetMachineLearningDataset[dataName_String, opts:OptionsPattern[]] :=
Block[{rowNamesQ, missingToNAQ, exampleGroup, data, ds, varNames, dsVarNames},
rowNamesQ = TrueQ[OptionValue[GetMachineLearningDataset,"RowIDs"]];
missingToNAQ = TrueQ[OptionValue[GetMachineLearningDataset,"MissingToNA"]];
exampleGroup = "MachineLearning";
data = ExampleData[{exampleGroup, dataName}, "Data"];
ds = Dataset[Flatten@*List @@@ ExampleData[{exampleGroup, dataName}, "Data"]];
dsVarNames =
Flatten[List @@
ExampleData[{exampleGroup, dataName}, "VariableDescriptions"]];
If[dataName == "FisherIris", dsVarNames = Most[dsVarNames]];
If[dataName == "Satellite",
dsVarNames =
Append[Table["Spectral-" <> ToString[i], {i, 1, Dimensions[ds][[2]] - 1}], "Type Of Land Surface"]
];
dsVarNames =
StringReplace[dsVarNames,
"edibility of mushroom (either edible or poisonous)" ~~ (WhitespaceCharacter ...) -> "edibility"];
dsVarNames =
StringReplace[dsVarNames,
"wine quality (score between 1-10)" ~~ (WhitespaceCharacter ...) -> "wine quality"];
dsVarNames =
StringJoin[
StringReplace[
StringSplit[#], {WordBoundary ~~ x_ :> ToUpperCase[x]}]] & /@
dsVarNames;
dsVarNames =
StringReplace[
dsVarNames, {StartOfString ~~ x_ :> ToLowerCase[x]}];
varNames = Most[dsVarNames] -> Last[dsVarNames];
ds = ds[All, AssociationThread[dsVarNames -> #] &];
ds = ds[MapIndexed[<|"id" -> #2[[1]], #|> &]];
If[dataName == "Titanic",
ds = ds[Map[<|#, "passengerAge" -> If[! NumberQ[#passengerAge], -1, Round[#passengerAge/10]*10]|> &]];
];
If[ rowNamesQ,
ds = Dataset[AssociationThread[ToString /@ Normal[ds[All, "id"]], Normal[ds]]];
];
If[ missingToNAQ,
ds = ds /. _Missing -> "NA"
];
ds
];
End[];(* `Private` *)
EndPackage[]