-
Notifications
You must be signed in to change notification settings - Fork 118
/
generate_figures_and_tables.py
484 lines (438 loc) · 20.2 KB
/
generate_figures_and_tables.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
# %% Import packages
import pandas as pd
import numpy as np
from sklearn.metrics import (confusion_matrix,
precision_score, recall_score, f1_score,
precision_recall_curve, average_precision_score)
import matplotlib.pyplot as plt
import seaborn as sns
import xarray as xr
from scipy.stats.distributions import chi2
from itertools import combinations
# %% Auxiliar functions
def get_scores(y_true, y_pred, score_fun):
nclasses = np.shape(y_true)[1]
scores = []
for name, fun in score_fun.items():
scores += [[fun(y_true[:, k], y_pred[:, k]) for k in range(nclasses)]]
return np.array(scores).T
def specificity_score(y_true, y_pred):
m = confusion_matrix(y_true, y_pred, labels=[0, 1])
spc = m[0, 0] * 1.0 / (m[0, 0] + m[0, 1])
return spc
def get_optimal_precision_recall(y_true, y_score):
"""Find precision and recall values that maximize f1 score."""
n = np.shape(y_true)[1]
opt_precision = []
opt_recall = []
opt_threshold = []
for k in range(n):
# Get precision-recall curve
precision, recall, threshold = precision_recall_curve(y_true[:, k], y_score[:, k])
# Compute f1 score for each point (use nan_to_num to avoid nans messing up the results)
f1_score = np.nan_to_num(2 * precision * recall / (precision + recall))
# Select threshold that maximize f1 score
index = np.argmax(f1_score)
opt_precision.append(precision[index])
opt_recall.append(recall[index])
t = threshold[index-1] if index != 0 else threshold[0]-1e-10
opt_threshold.append(t)
return np.array(opt_precision), np.array(opt_recall), np.array(opt_threshold)
def affer_results(y_true, y_pred):
"""Return true positives, false positives, true negatives, false negatives.
Parameters
----------
y_true : ndarray
True value
y_pred : ndarray
Predicted value
Returns
-------
tn, tp, fn, fp: ndarray
Boolean matrices containing true negatives, true positives, false negatives and false positives.
cm : ndarray
Matrix containing: 0 - true negative, 1 - true positive,
2 - false negative, and 3 - false positive.
"""
# True negative
tn = (y_true == y_pred) & (y_pred == 0)
# True positive
tp = (y_true == y_pred) & (y_pred == 1)
# False positive
fp = (y_true != y_pred) & (y_pred == 1)
# False negative
fn = (y_true != y_pred) & (y_pred == 0)
# Generate matrix of "tp, fp, tn, fn"
m, n = np.shape(y_true)
cm = np.zeros((m, n), dtype=int)
cm[tn] = 0
cm[tp] = 1
cm[fn] = 2
cm[fp] = 3
return tn, tp, fn, fp, cm
# %% Constants
score_fun = {'Precision': precision_score,
'Recall': recall_score, 'Specificity': specificity_score,
'F1 score': f1_score}
diagnosis = ['1dAVb', 'RBBB', 'LBBB', 'SB', 'AF', 'ST']
nclasses = len(diagnosis)
predictor_names = ['DNN', 'cardio.', 'emerg.', 'stud.']
# %% Read datasets
# Get two annotators
y_cardiologist1 = pd.read_csv('./data/annotations/cardiologist1.csv').values
y_cardiologist2 = pd.read_csv('./data/annotations/cardiologist2.csv').values
# Get true values
y_true = pd.read_csv('./data/annotations/gold_standard.csv').values
# Get residents and students performance
y_cardio = pd.read_csv('./data/annotations/cardiology_residents.csv').values
y_emerg = pd.read_csv('./data/annotations/emergency_residents.csv').values
y_student = pd.read_csv('./data/annotations/medical_students.csv').values
# get y_score for different models
y_score_list = [np.load('./dnn_predicts/other_seeds/model_' + str(i+1) + '.npy') for i in range(10)]
# %% Get average model model
# Get micro average precision
micro_avg_precision = [average_precision_score(y_true[:, :6], y_score[:, :6], average='micro')
for y_score in y_score_list]
# get ordered index
index = np.argsort(micro_avg_precision)
print('Micro average precision')
print(np.array(micro_avg_precision)[index])
# get 6th best model (immediatly above median) out 10 different models
k_dnn_best = index[5]
y_score_best = y_score_list[k_dnn_best]
# Get threshold that yield the best precision recall using "get_optimal_precision_recall" on validation set
# (we rounded it up to three decimal cases to make it easier to read...)
threshold = np.array([0.124, 0.07, 0.05, 0.278, 0.390, 0.174])
mask = y_score_best > threshold
# Get neural network prediction
# This data was also saved in './data/annotations/dnn.csv'
y_neuralnet = np.zeros_like(y_score_best)
y_neuralnet[mask] = 1
y_neuralnet[mask] = 1
# %% Generate table with scores for the average model (Table 2)
scores_list = []
for y_pred in [y_neuralnet, y_cardio, y_emerg, y_student]:
# Compute scores
scores = get_scores(y_true, y_pred, score_fun)
# Put them into a data frame
scores_df = pd.DataFrame(scores, index=diagnosis, columns=score_fun.keys())
# Append
scores_list.append(scores_df)
# Concatenate dataframes
scores_all_df = pd.concat(scores_list, axis=1, keys=['DNN', 'cardio.', 'emerg.', 'stud.'])
# Change multiindex levels
scores_all_df = scores_all_df.swaplevel(0, 1, axis=1)
scores_all_df = scores_all_df.reindex(level=0, columns=score_fun.keys())
# Save results
scores_all_df.to_excel("./outputs/tables/scores.xlsx", float_format='%.3f')
scores_all_df.to_csv("./outputs/tables/scores.csv", float_format='%.3f')
# %% Plot precision recall curves (Figure 2)
for k, name in enumerate(diagnosis):
precision_list = []
recall_list = []
threshold_list = []
average_precision_list = []
fig, ax = plt.subplots()
lw = 2
t = ['bo', 'rv', 'gs', 'kd']
for j, y_score in enumerate(y_score_list):
# Get precision-recall curve
precision, recall, threshold = precision_recall_curve(y_true[:, k], y_score[:, k])
recall[np.isnan(recall)] = 0 # change nans to 0
precision[np.isnan(precision)] = 0 # change nans to 0
# Plot if is the choosen option
if j == k_dnn_best:
ax.plot(recall, precision, color='blue', alpha=0.7)
# Compute average precision
average_precision = average_precision_score(y_true[:, k], y_score[:, k])
precision_list += [precision]
recall_list += [recall]
average_precision_list += [average_precision]
threshold_list += [threshold]
# Plot shaded region containing maximum and minimun from other executions
recall_all = np.concatenate(recall_list)
recall_all = np.sort(recall_all) # sort
recall_all = np.unique(recall_all) # remove repeated entries
recall_vec = []
precision_min = []
precision_max = []
for r in recall_all:
p_max = [max(precision[recall == r]) for recall, precision in zip(recall_list, precision_list)]
p_min = [min(precision[recall == r]) for recall, precision in zip(recall_list, precision_list)]
recall_vec += [r, r]
precision_min += [min(p_max), min(p_min)]
precision_max += [max(p_max), max(p_min)]
ax.plot(recall_vec, precision_min, color='blue', alpha=0.3)
ax.plot(recall_vec, precision_max, color='blue', alpha=0.3)
ax.fill_between(recall_vec, precision_min, precision_max,
facecolor="blue", alpha=0.3)
# Plot iso-f1 curves
f_scores = np.linspace(0.1, 0.95, num=15)
for f_score in f_scores:
x = np.linspace(0.0000001, 1, 1000)
y = f_score * x / (2 * x - f_score)
ax.plot(x[y >= 0], y[y >= 0], color='gray', ls=':', lw=0.7, alpha=0.25)
# Plot values in
for npred in range(4):
ax.plot(scores_list[npred]['Recall'][k], scores_list[npred]['Precision'][k],
t[npred], label=predictor_names[npred])
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
ax.set_xlim([0.0, 1.0])
ax.set_ylim([0.0, 1.02])
if k in [3, 4, 5]:
ax.set_xlabel('Recall (Sensitivity)', fontsize=17)
if k in [0, 3]:
ax.set_ylabel('Precision (PPV)', fontsize=17)
# plt.title('Precision-Recall curve (' + name + ')')
if k == 0:
plt.legend(loc="lower left", fontsize=17)
else:
ax.legend().remove()
plt.tight_layout()
plt.savefig('./outputs/figures/precision_recall_{0}.pdf'.format(name))
# %% Confusion matrices (Supplementary Table 1)
M = [[confusion_matrix(y_true[:, k], y_pred[:, k], labels=[0, 1])
for k in range(nclasses)] for y_pred in [y_neuralnet, y_cardio, y_emerg, y_student]]
M_xarray = xr.DataArray(np.array(M),
dims=['predictor', 'diagnosis', 'true label', 'predicted label'],
coords={'predictor': ['DNN', 'cardio.', 'emerg.', 'stud.'],
'diagnosis': diagnosis,
'true label': ['not present', 'present'],
'predicted label': ['not present', 'present']})
confusion_matrices = M_xarray.to_dataframe('n')
confusion_matrices = confusion_matrices.reorder_levels([1, 2, 3, 0], axis=0)
confusion_matrices = confusion_matrices.unstack()
confusion_matrices = confusion_matrices.unstack()
confusion_matrices = confusion_matrices['n']
confusion_matrices.to_excel("./outputs/tables/confusion matrices.xlsx", float_format='%.3f')
confusion_matrices.to_csv("./outputs/tables/confusion matrices.csv", float_format='%.3f')
#%% Compute scores and bootstraped version of these scores
bootstrap_nsamples = 1000
percentiles = [2.5, 97.5]
scores_resampled_list = []
scores_percentiles_list = []
for y_pred in [y_neuralnet, y_cardio, y_emerg, y_student]:
# Compute bootstraped samples
np.random.seed(123) # NEVER change this =P
n, _ = np.shape(y_true)
samples = np.random.randint(n, size=n * bootstrap_nsamples)
# Get samples
y_true_resampled = np.reshape(y_true[samples, :], (bootstrap_nsamples, n, nclasses))
y_doctors_resampled = np.reshape(y_pred[samples, :], (bootstrap_nsamples, n, nclasses))
# Apply functions
scores_resampled = np.array([get_scores(y_true_resampled[i, :, :], y_doctors_resampled[i, :, :], score_fun)
for i in range(bootstrap_nsamples)])
# Sort scores
scores_resampled.sort(axis=0)
# Append
scores_resampled_list.append(scores_resampled)
# Compute percentiles index
i = [int(p / 100.0 * bootstrap_nsamples) for p in percentiles]
# Get percentiles
scores_percentiles = scores_resampled[i, :, :]
# Convert percentiles to a dataframe
scores_percentiles_df = pd.concat([pd.DataFrame(x, index=diagnosis, columns=score_fun.keys())
for x in scores_percentiles], keys=['p1', 'p2'], axis=1)
# Change multiindex levels
scores_percentiles_df = scores_percentiles_df.swaplevel(0, 1, axis=1)
scores_percentiles_df = scores_percentiles_df.reindex(level=0, columns=score_fun.keys())
# Append
scores_percentiles_list.append(scores_percentiles_df)
# Concatenate dataframes
scores_percentiles_all_df = pd.concat(scores_percentiles_list, axis=1, keys=predictor_names)
# Change multiindex levels
scores_percentiles_all_df = scores_percentiles_all_df.reorder_levels([1, 0, 2], axis=1)
scores_percentiles_all_df = scores_percentiles_all_df.reindex(level=0, columns=score_fun.keys())
#%% Print box plot (Supplementary Figure 1)
# Convert to xarray
scores_resampled_xr = xr.DataArray(np.array(scores_resampled_list),
dims=['predictor', 'n', 'diagnosis', 'score_fun'],
coords={
'predictor': predictor_names,
'n': range(bootstrap_nsamples),
'diagnosis': ['1dAVb', 'RBBB', 'LBBB', 'SB', 'AF', 'ST'],
'score_fun': list(score_fun.keys())})
# Remove everything except f1_score
for sf in score_fun:
fig, ax = plt.subplots()
f1_score_resampled_xr = scores_resampled_xr.sel(score_fun=sf)
# Convert to dataframe
f1_score_resampled_df = f1_score_resampled_xr.to_dataframe(name=sf).reset_index(level=[0, 1, 2])
# Plot seaborn
ax = sns.boxplot(x="diagnosis", y=sf, hue="predictor", data=f1_score_resampled_df)
# Save results
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.xlabel("")
plt.ylabel("", fontsize=16)
if sf == "F1 score":
plt.legend(fontsize=17)
else:
ax.legend().remove()
plt.tight_layout()
plt.savefig('./outputs/figures/boxplot_bootstrap_{}.pdf'.format(sf))
scores_resampled_xr.to_dataframe(name='score').to_csv('./outputs/figures/boxplot_bootstrap_data.txt')
#%% McNemar test (Supplementary Table 3)
# Get correct and wrong predictions for each of them (cm >= 2 correspond to wrong predictions)
wrong_predictions = np.array([affer_results(y_true, y_pred)[4] >= 2
for y_pred in [y_neuralnet, y_cardio, y_emerg, y_student]])
# Compute McNemar score
names = ["DNN", "cardio.", "emerg.", "stud."]
mcnemar_name = []
mcnemar_score = np.empty((6, 6))
k = 0
for i in range(4):
for j in range(i+1, 4):
a_not_b = np.sum(wrong_predictions[i, :, :] & ~wrong_predictions[j, :, :], axis=0)
b_not_a = np.sum(~wrong_predictions[i, :, :] & wrong_predictions[j, :, :], axis=0)
# An alterantive to the standard McNemar test is to include a
# continuity correction term, resulting in:
# mcnemar_corr_score = np.square(np.abs(a_not_b - b_not_a) - 1) / (a_not_b + b_not_a)
# I tested both and came the conclusion, that we cannot reject the null hypotesis
# for neither. The standard test however provide results that are easier to visualize.
mcnemar_score[k, :] = np.square(a_not_b - b_not_a) / (a_not_b + b_not_a)
k += 1
mcnemar_name += [names[i] + " vs " + names[j]]
mcnemar = pd.DataFrame(1-chi2.cdf(mcnemar_score, 1), index=mcnemar_name, columns=diagnosis) # p-value
# Save results
mcnemar.to_excel("./outputs/tables/mcnemar.xlsx", float_format='%.3f')
mcnemar.to_csv("./outputs/tables/mcnemar.csv", float_format='%.3f')
# %% Kappa score classifiers (Supplementary Table 2(a))
names = ["DNN", "cardio.", "emerg.", "stud."]
predictors = [y_neuralnet, y_cardio, y_emerg, y_student]
kappa_name = []
kappa_score = np.empty((6, 6))
k = 0
for i in range(4):
for j in range(i+1, 4):
y_pred_1 = predictors[i]
y_pred_2 = predictors[j]
# Get "confusion matrix"
negative_negative, positive_positive, positive_negative, negative_positive, _ = \
affer_results(y_pred_1, y_pred_2)
p_p = positive_positive.sum(axis=0)
p_n = positive_negative.sum(axis=0)
n_p = negative_positive.sum(axis=0)
n_n = negative_negative.sum(axis=0)
total_sum = p_p + p_n + n_p + n_n
# Relative agreement
r_agree = (p_p + n_n) / total_sum
# Empirical probability of both saying yes
p_yes = (p_p + p_n) * (p_p + n_p) / total_sum**2
# Empirical probability of both saying no
p_no = (n_n + n_p) * (n_n + p_n) / total_sum**2
# Empirical probability of agreement
p_agree = p_yes + p_no
# Kappa score
kappa_score[k, :] = (r_agree - p_agree) / (1 - p_agree)
k += 1
kappa_name += [names[i] + " vs " + names[j]]
kappa = pd.DataFrame(kappa_score, index=kappa_name, columns=diagnosis) # p-value
# Save results
kappa.to_excel("./outputs/tables/kappa.xlsx", float_format='%.3f')
kappa.to_csv("./outputs/tables/kappa.csv", float_format='%.3f')
# %% Kappa score dataset generation (Supplementary Table 2(b))
# Compute kappa score
kappa_list = []
names_list = []
raters = [('DNN', y_neuralnet), ('Cert. cardiol. 1', y_cardiologist1), ('Certif. cardiol. 2', y_cardiologist2)]
for r1, r2 in combinations(raters, 2):
name1, y1 = r1
name2, y2 = r2
negative_negative, positive_positive, positive_negative, negative_positive, _ = \
affer_results(y1, y2)
p_p = positive_positive.sum(axis=0)
p_n = positive_negative.sum(axis=0)
n_p = negative_positive.sum(axis=0)
n_n = negative_negative.sum(axis=0)
total_sum = p_p + p_n + n_p + n_n
# Relative agreement
r_agree = (p_p + n_n) / total_sum
# Empirical probability of both saying yes
p_yes = (p_p + p_n) * (p_p + n_p) / total_sum ** 2
# Empirical probability of both saying no
p_no = (n_n + n_p) * (n_n + p_n) / total_sum ** 2
# Empirical probability of agreement
p_agree = p_yes + p_no
# Kappa score
kappa = (r_agree - p_agree) / (1 - p_agree)
kappa_list.append(kappa)
names_list.append('{} vs {}'.format(name1, name2))
kappas_annotators_and_DNN = pd.DataFrame(np.stack(kappa_list), columns=diagnosis, index=names_list)
print(kappas_annotators_and_DNN)
kappas_annotators_and_DNN.to_excel("./outputs/tables/kappas_annotators_and_DNN.xlsx", float_format='%.3f')
kappas_annotators_and_DNN.to_csv("./outputs/tables/kappas_annotators_and_DNN.csv", float_format='%.3f')
# %% Compute scores and bootstraped version of these scores on alternative splits
bootstrap_nsamples = 1000
scores_resampled_list = []
scores_percentiles_list = []
for name in ['normal_order', 'date_order', 'individual_patients', 'base_model']:
print(name)
# Get data
yn_true = y_true
yn_score = np.load('./dnn_predicts/other_splits/model_'+name+'.npy') if not name == 'base_model' else y_score_best
# Compute threshold
nclasses = np.shape(yn_true)[1]
opt_precision, opt_recall, threshold = get_optimal_precision_recall(yn_true, yn_score)
mask_n = yn_score > threshold
yn_pred = np.zeros_like(yn_score)
yn_pred[mask_n] = 1
# Compute bootstraped samples
np.random.seed(123) # NEVER change this =P
n, _ = np.shape(yn_true)
samples = np.random.randint(n, size=n * bootstrap_nsamples)
# Get samples
y_true_resampled = np.reshape(yn_true[samples, :], (bootstrap_nsamples, n, nclasses))
y_doctors_resampled = np.reshape(yn_pred[samples, :], (bootstrap_nsamples, n, nclasses))
# Apply functions
scores_resampled = np.array([get_scores(y_true_resampled[i, :, :], y_doctors_resampled[i, :, :], score_fun)
for i in range(bootstrap_nsamples)])
# Sort scores
scores_resampled.sort(axis=0)
# Append
scores_resampled_list.append(scores_resampled)
# Compute percentiles index
i = [int(p / 100.0 * bootstrap_nsamples) for p in percentiles]
# Get percentiles
scores_percentiles = scores_resampled[i, :, :]
# Convert percentiles to a dataframe
scores_percentiles_df = pd.concat([pd.DataFrame(x, index=diagnosis, columns=score_fun.keys())
for x in scores_percentiles], keys=['p1', 'p2'], axis=1)
# Change multiindex levels
scores_percentiles_df = scores_percentiles_df.swaplevel(0, 1, axis=1)
scores_percentiles_df = scores_percentiles_df.reindex(level=0, columns=score_fun.keys())
# Append
scores_percentiles_list.append(scores_percentiles_df)
# %% Print box plot on alternative splits (Supplementary Figure 2 (a))
scores_resampled_xr = xr.DataArray(np.array(scores_resampled_list),
dims=['predictor', 'n', 'diagnosis', 'score_fun'],
coords={
'predictor': ['random', 'by date', 'by patient', 'original DNN'],
'n': range(bootstrap_nsamples),
'diagnosis': ['1dAVb', 'RBBB', 'LBBB', 'SB', 'AF', 'ST'],
'score_fun': list(score_fun.keys())})
# Remove everything except f1_score
sf = 'F1 score'
fig, ax = plt.subplots()
f1_score_resampled_xr = scores_resampled_xr.sel(score_fun=sf)
# Convert to dataframe
f1_score_resampled_df = f1_score_resampled_xr.to_dataframe(name=sf).reset_index(level=[0, 1, 2])
# Plot seaborn
ax = sns.boxplot(x="diagnosis", y=sf, hue="predictor", data=f1_score_resampled_df,
order=['1dAVb', 'SB', 'AF', 'ST', 'RBBB', 'LBBB'],
palette=sns.color_palette("Set1", n_colors=8))
plt.axvline(3.5, color='black', ls='--')
plt.axvline(5.5, color='black', ls='--')
plt.axvspan(3.5, 5.5, alpha=0.1, color='gray')
# Save results
plt.xticks(fontsize=16)
plt.yticks(fontsize=16)
plt.xlabel("")
plt.ylabel("F1 score", fontsize=16)
plt.legend(fontsize=17)
plt.ylim([0.4, 1.05])
plt.xlim([-0.5, 5.5])
plt.tight_layout()
plt.savefig('./outputs/figures/boxplot_bootstrap_other_splits_{0}.pdf'.format(sf))
f1_score_resampled_df.to_csv('./outputs/figures/boxplot_bootstrap_other_splits_data.txt', index=False)