-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathtest_air_passengers_slow_mode.py
48 lines (34 loc) · 1.25 KB
/
test_air_passengers_slow_mode.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
import pandas as pd
import numpy as np
import pyaf.ForecastEngine as autof
import pyaf.Bench.TS_datasets as tsds
b1 = tsds.load_airline_passengers()
df = b1.mPastData
df.head()
lEngine = autof.cForecastEngine()
lEngine
H = b1.mHorizon;
lEngine.mOptions.enable_slow_mode();
# lEngine.mOptions.mCrossValidationOptions.mMethod = "TSCV";
lEngine.mOptions.mParallelMode = True;
lEngine.train(df , b1.mTimeVar , b1.mSignalVar, H);
lEngine.getModelInfo();
lEngine.mSignalDecomposition.mBestModel.mTimeInfo.mResolution
lEngine.standardPlots(name = "outputs/my_airline_passengers_slow_mode")
dfapp_in = df.copy();
dfapp_in.tail()
#H = 12
dfapp_out = lEngine.forecast(dfapp_in, H);
dfapp_out.tail(2 * H)
print("Forecast Columns " , dfapp_out.columns);
lForecastColumnName = b1.mSignalVar + '_Forecast'
Forecast_DF = dfapp_out[[b1.mTimeVar , b1.mSignalVar, lForecastColumnName , lForecastColumnName + '_Lower_Bound', lForecastColumnName + '_Upper_Bound' ]]
print(Forecast_DF.info())
print("Forecasts\n" , Forecast_DF.tail(2*H));
print("\n\n<ModelInfo>")
print(lEngine.to_json());
print("</ModelInfo>\n\n")
print("\n\n<Forecast>")
print(Forecast_DF.tail(2*H).to_json(date_format='iso'))
print("</Forecast>\n\n")
# lEngine.standardPlots(name = "outputs/airline_passengers")