Skip to content

Latest commit

 

History

History
86 lines (77 loc) · 4.99 KB

README.md

File metadata and controls

86 lines (77 loc) · 4.99 KB

Training neural networks with back-prop, feedback-alignment and direct feedback-alignment

This repo contains code to reproduce experiments in paper "Direct Feedback Alignment Provides Learning in Deep Neural Networks" (https://arxiv.org/abs/1609.01596)

This code and readme is copied and modified based on https://github.com/eladhoffer/ConvNet-torch (Deep Networks on classification tasks using Torch)

Supported datasets are {Cifar10/100, STL10, SVHN, MNIST}

Data

You can get the needed data using @soumith's repo: https://github.com/soumith/cifar.torch.git

Dependencies

To install all dependencies (assuming torch is installed) use:

luarocks install https://raw.githubusercontent.com/eladhoffer/eladtools/master/eladtools-scm-1.rockspec
luarocks install https://raw.githubusercontent.com/eladhoffer/DataProvider.torch/master/dataprovider-scm-1.rockspec
luarocks install dpnn
luarocks install unsup
luarocks install https://raw.github.com/andresy/mnist/master/rocks/mnist-scm-1.rockspec

Training

You can reproduce the best results for direct feedback-alignment for each dataset with:

th Main.lua -dataset MNIST -network mlp.lua -LR 1e-4 -eps 0.08

or,

th Main.lua -dataset Cifar10 -network conv.lua -LR 5e-5 -whiten

or,

th Main.lua -dataset Cifar100 -network conv.lua -LR 2.5e-5 -whiten

Additional flags

Flag Default Value Description
modelsFolder ./Models/ models Folder
network mlp.lua model file - must return valid network.
criterion bce criterion, ce(cross-entropy) or bce(binary cross-entropy)
eps 0 adversarial regularization magnitude (fast-sign-method a.la Goodfellow)
dropout 0 1=apply dropout regularization
batchnorm 0 1=apply batch normalization
nonlin tanh nonlinearity (tanh,sigm,relu)
num_layers 2 number of hidden layers (if applicable)
num_hidden 800 number of hidden neurons (if applicable)
bias 1 0=do not use bias
rfb_mag 0 random feedback magnitude, 0=uniform distribution in [-1/sqrt(fanout),1/sqrt(fanout)], X=uniform distribution in [-X,X], X=1 works fine with SGD
LR 0.0001 learning rate
LRDecay 0 learning rate decay (in # samples)
weightDecay 0 L2 penalty on the weights
momentum 0 momentum
batchSize 64 batch size
optimization rmsprop optimization method(sgd,rmsprop,adam etc)
epoch 300 number of epochs to train (-1 for unbounded)
epoch_step -1 learning rate step, -1 for no step, 0 for auto, >0 for multiple of epochs to decrease
gradient dfa gradient for learning, bp(back-prop), fa(feedback-alignment) or dfa(direct feedback-alignment)
maxInNorm 400 max norm on incoming weights
maxOutNorm 400 max norm on outgoing weights
accGradient 0 1=accumulate normal and adversarial gradient (if eps>0)
threads 8 number of threads
type cuda float or cuda
devid 1 device ID (if using CUDA)
load none load existing net weights
save time-identifier save directory
dataset MNIST dataset - Cifar10, Cifar100, STL10, SVHN, MNIST
datapath ./Datasets/ data set directory
normalization scale scale(between 0 and 1), simple(whole sample,mean=0,std=1), channel(by image channel), image(mean and std images)
format rgb rgb or yuv
whiten false whiten data
augment false augment training data
preProcDir ./PreProcData/ data directory for pre-processing (means,Pinv,P)
validate false use validation set for testing instead of test set
visualize 0 1=visualizing results