-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
312 lines (246 loc) · 12.2 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import numpy as np
import pandas as pd
import torch
from pytorch_pretrained_bert import BertTokenizer, BertConfig, BertForMaskedLM
from torch.utils.data import Dataset, DataLoader
from tqdm.auto import tqdm
from transformers import BertTokenizer
import joblib
from sklearn import metrics
from preprocess_dataset import tokenize_text
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
class QADataset(Dataset):
def __init__(self, tokenizer: BertTokenizer,
paragraph_tokens: list,
question_tokens: list,
answer_spans: list,
word2index: dict,
verbose=True,
max_seq_len=512,
pad_token="[PAD]"):
super().__init__()
self.tokenizer = tokenizer
self.word2index = word2index
self.word2bert_tokens = {word: self.tokenizer.tokenize(word) for word
in tqdm(list(self.word2index.keys())[1:])}
self.word2bert_indices = {
word: [self.tokenizer.vocab[bert_token] for bert_token in
self.word2bert_tokens[word]] for word in
self.word2bert_tokens.keys()}
self.sequence_length = max_seq_len
self.pad_index = self.word2index[pad_token]
self.x_data = []
self.y_data = []
self.bert_spans = []
self.load_x_y(paragraph_tokens, question_tokens, answer_spans)
def load_x_y(self, paragraphs, questions, spans, verbose=True):
for par, quest, span in tqdm(zip(paragraphs, questions, spans),
desc="Loading data", disable=not verbose):
tokens = ["[CLS]"] + par + ["[SEP]"] + quest + ["[SEP]"]
start, end = span.split(",")
start, end = int(start), int(end)
bert_tokens = [self.word2bert_indices[word] for word in tokens]
bert_span_start = sum(len(x) for x in bert_tokens[:start + 1])
bert_span_end = sum(len(x) for x in bert_tokens[:end + 1]) # прибавляем 1, т.к. у нас в начале есть еще токен CLS
span = (bert_span_start, bert_span_end)
bert_tokens = sum(bert_tokens, [])
if len(bert_tokens) > 512:
par_tokens = [self.word2bert_indices[word] for word in ["[CLS]"] + par]
quest_tokens = [self.word2bert_indices[word] for word in ["[SEP]"] + quest + ["[SEP]"]]
if bert_span_start <= len(par_tokens)/2: # если спан в первой половине параграфа
slice_ = len(bert_tokens) - 512
bert_tokens = sum(par_tokens[:-slice_] + quest_tokens, [])
elif bert_span_start > len(par_tokens)/2:
slice_ = len(bert_tokens) - 512
if slice_ > self.sequence_length:
bert_tokens = sum(par_tokens[slice_:-slice_] + quest_tokens, [])
bert_span_start = bert_span_start - slice_
bert_span_end = bert_span_end - slice_
else:
slice_ = len(bert_tokens) - 512
bert_span_start = bert_span_start - slice_
bert_span_end = bert_span_end - slice_
bert_tokens = sum(par_tokens[slice_:] + quest_tokens, [])
bert_span = (bert_span_start, bert_span_end-1)
target = [-1] * self.sequence_length
if bert_span_start < self.sequence_length:
target[bert_span_start] = 0
# assert bert_span_end > 0
if bert_span_end < self.sequence_length:
target[bert_span_end-1] = 1
self.x_data.append(bert_tokens)
self.y_data.append(target)
self.bert_spans.append(bert_span)
def padding(self, sequence):
if len(sequence) > self.sequence_length:
sequence = sequence[: self.sequence_length]
elif len(sequence) < self.sequence_length:
sequence += [self.pad_index for i in
range(self.sequence_length - len(sequence))]
return sequence
def __len__(self):
return len(self.x_data)
def __getitem__(self, idx):
x = self.x_data[idx]
x = self.padding(x)
x = torch.Tensor(x).long()
y = self.y_data[idx]
y = torch.Tensor(y).long()
bert_span = self.bert_spans[idx]
bert_span = torch.Tensor(bert_span).long()
return x, y, bert_span
class Classifier(torch.nn.Module):
def __init__(self,
hidden_size=768,
linear_out=2,
batch_first=True):
super(Classifier, self).__init__()
self.output_model_file = "lm/pytorch_model.bin"
self.output_config_file = "lm/config.json"
self.tokenizer = BertTokenizer.from_pretrained("lm", do_lower_case=False)
self.config = BertConfig.from_json_file(self.output_config_file)
self.model = BertForMaskedLM(self.config)
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
self.state_dict = torch.load(self.output_model_file, map_location=device)
self.model.load_state_dict(self.state_dict)
self.lstm = torch.nn.LSTM(hidden_size, 300)
self.linear = torch.nn.Linear(300, linear_out)
def get_embeddings(self, x_instance):
indexed_tokens = x_instance.tolist()
break_sentence = indexed_tokens.index(102)
tokens_tensor = torch.tensor([indexed_tokens])
segments_ids = [0] * (break_sentence+1)
segments_ids += [1] * (len(indexed_tokens) - break_sentence - 1)
segments_tensors = torch.tensor([segments_ids])
self.model.eval()
with torch.no_grad():
encoded_layers, _ = self.model.bert(tokens_tensor.to(device),
segments_tensors.to(device))
token_embeddings = torch.stack(encoded_layers, dim=0)
token_embeddings = torch.squeeze(token_embeddings, dim=1)
token_embeddings = token_embeddings.permute(1, 0, 2)
token_vecs_cat = []
for token in token_embeddings:
cat_vec = torch.stack((token[-1], token[-2], token[-3], token[-4]))
mean_vec = torch.mean(cat_vec, 0)
token_vecs_cat.append(mean_vec)
token_vecs_cat = torch.stack(token_vecs_cat, dim=0)
return token_vecs_cat
def embed_data(self, x):
entries = []
for entry in x:
emb = self.get_embeddings(entry.to(device)).to(device)
entries.append(emb)
return torch.stack(entries)
def forward(self, x):
h = self.embed_data(x)
h = h.permute(1, 0, 2)
output, _ = self.lstm(h)
pred = self.linear(output)
pred = pred.permute(1, 0, 2)
return pred
def train_model(model, epochs, train_loader, dev_loader, optimizer, criterion):
train_losses = []
dev_losses = []
for n_epoch in range(epochs):
progress_bar = tqdm(total=len(train_loader.dataset),
desc='Epoch {}'.format(n_epoch + 1))
for x, y, bert_span in train_loader:
optimizer.zero_grad()
pred = model.forward(x.to(device))
loss = criterion(pred.to(device).permute(0, 2, 1),
y.long().to(device))
loss.backward()
optimizer.step()
train_losses.append(loss.item())
progress_bar.set_postfix(loss=np.mean(train_losses[-500:]))
progress_bar.update(x.shape[0])
progress_bar.close()
with torch.no_grad():
progress_bar = tqdm(total=len(dev_loader.dataset), desc='Validation')
for x, y, bert_span in dev_loader:
pred = model.forward(x.to(device))
loss = criterion(pred.to(device).permute(0, 2, 1),
y.long().to(device))
spanlist.append(torch.argmax(pred, dim=1).tolist())
predictedlist.append(y.tolist())
dev_losses.append(loss.item())
progress_bar.set_postfix(loss=np.mean(dev_losses[-500:]))
progress_bar.update(x.shape[0])
print(metrics.classification_report(spanlist, predictedlist, digits=2))
torch.save(model, "classifier-" + str(n_epoch+1) + ".pkl")
joblib.dump(train_losses, "train_losses.pkl")
# torch.save({
# 'epoch': n_epoch+1,
# 'model_state_dict': model.state_dict,
# 'optimizer_state_dict': optimizer.state_dict,
# 'loss': train_losses,
# },
# "/content/drive/My Drive/colab/classifier_state_dict" + str(n_epoch+1) + ".pkl")
return train_losses, dev_losses
def main():
data = pd.read_csv("sberquad.csv")
data['span_len'] = data.apply(
lambda row: int(row.word_answer_span.split(",")[1]) - int(
row.word_answer_span.split(",")[0]), axis=1)
data['span_avg'] = data.apply(lambda row: (int(
row.word_answer_span.split(",")[1]) + int(
row.word_answer_span.split(",")[0])) / 2, axis=1)
data = data[(data.span_len <= 10) & (data.span_avg <= 150)]
par_tokens = [i.split() for i in data.paragraph_tokens]
que_tokens = [tokenize_text(i) for i in data.question]
answer_spans = data.word_answer_span
word2index = {"[PAD]":0, "[CLS]":1, "[SEP]":2}
for sent in par_tokens:
for token in sent:
if token not in word2index:
word2index[token] = len(word2index)
for que in que_tokens:
for token in que:
if token not in word2index:
word2index[token] = len(word2index)
tokenizer = BertTokenizer.from_pretrained("lm", do_lower_case=False)
from sklearn.model_selection import train_test_split
train, temp = train_test_split(data, test_size=0.3, random_state=42)
dev, test = train_test_split(temp, test_size=0.5, random_state=42)
train = train.reset_index(drop=True)
test = test.reset_index(drop=True)
dev = dev.reset_index(drop=True)
par_tokens_train = [i.split() for i in train.paragraph_tokens]
que_tokens_train = [tokenize_text(i) for i in train.question]
answer_spans_train = train.word_answer_span
par_tokens_test = [i.split() for i in test.paragraph_tokens]
que_tokens_test = [tokenize_text(i) for i in test.question]
answer_spans_test = test.word_answer_span
par_tokens_dev = [i.split() for i in dev.paragraph_tokens]
que_tokens_dev = [tokenize_text(i) for i in dev.question]
answer_spans_dev = dev.word_answer_span
train_data = QADataset(tokenizer=tokenizer,
paragraph_tokens=par_tokens_train,
question_tokens=que_tokens_train,
answer_spans=answer_spans_train,
word2index=word2index)
test_data = QADataset(tokenizer=tokenizer,
paragraph_tokens=par_tokens_test,
question_tokens=que_tokens_test,
answer_spans=answer_spans_test,
word2index=word2index)
dev_data = QADataset(tokenizer=tokenizer,
paragraph_tokens=par_tokens_dev,
question_tokens=que_tokens_dev,
answer_spans=answer_spans_dev,
word2index=word2index)
train_loader = DataLoader(train_data, batch_size=32, drop_last=True)
test_loader = DataLoader(test_data, batch_size=32, drop_last=True)
dev_loader = DataLoader(dev_data, batch_size=32, drop_last=True)
epochs = 5
device = torch.device('cuda') # if torch.cuda.is_available() else torch.device('cpu')
model = Classifier().to(device)
criterion = torch.nn.CrossEntropyLoss(ignore_index=-1).to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=8e-6,
weight_decay=0.01)
print("Training the model...")
train_losses = train_model(model=model, epochs=epochs, optimizer=optimizer,
criterion=criterion, train_loader=train_loader, dev_loader=dev_loader)
if __name__ == "__main__":
main()