-
Notifications
You must be signed in to change notification settings - Fork 3
/
aug_util.py
892 lines (717 loc) · 29.9 KB
/
aug_util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
"""
Copyright 2018 Defense Innovation Unit Experimental
All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
Modifications copyright (C) 2018 <eScience Institue at University of Washington>
Licensed under CC BY-NC-ND 4.0 License [see LICENSE-CC BY-NC-ND 4.0.markdown for details]
Written by An Yan
"""
import numpy as np
from PIL import Image
#import tensorflow as tf
from PIL import Image, ImageDraw
import skimage.filters as filters
# for additional data augmentation
from skimage import data, exposure, img_as_float
import random
from skimage.transform import rescale, resize
from skimage.util import random_noise
import functools
from itertools import chain, combinations
from skimage.filters.rank import median
from skimage.morphology import disk
from PIL import Image, ImageFont, ImageDraw, ImageEnhance
"""
Image augmentation utilities to be used for processing the dataset. Importantly, these utilities modify
the images as well as their respective bboxes (for example, in rotation). Includes:
rotation, shifting, salt-and-pepper, gaussian blurring. Also includes a 'draw_bboxes' function
for visualizing augmented images and bboxes
"""
# debug
# added additional aumentation choices for enpanding small classes
'''
Expand one training image into multiple ones through augmentation
The augmentation is agressive in that it uses all possible combinations of
a list of augmentation methods.
Args:
img: the image to be augmented
boxes: an (N,4) array of bounding box coordinates for that image
classes: an (N,1) array of classes for each bounding box
class_id: the class to be augmented
Output:
An image array of shape (M,W,H,C), where M is the number of chips,
W and H are the dimensions of the image, and C is the number of color
channels. Also returns boxes and classes dictionaries for each corresponding chip
'''
def expand_aug_full(img, boxes, classes, class_id):
func_list = ['change_brightness', 'change_contrast', 'vertical_flip', 'horizontal_flip', 'median_blur', 'zoomin']
all_subset = all_subsets(func_list)
#debug
#print('locals, ', locals())
# number of augmentation = # of all combinations
# all_subset contains empty set, so -1
num_aug = len(list(all_subset)) -1
# debug
#print('one image is augmented into: ', num_aug)
# number of different choices of augmentation done to one image
w,h, _ = img.shape
images = np.zeros((num_aug,w,h,3))
total_boxes = {}
total_classes = {}
#newimg = np.copy(img)
#newboxes = np.copy(boxes)
#newclasses = np.copy(classes)
k = 0 # k = [0, num_aug)
for subset in all_subsets(func_list):
len_sub = len(subset)
if len_sub == 0:
continue
newimg = np.copy(img)
newboxes = np.copy(boxes)
newclasses = np.copy(classes)
for idx in range(len_sub):
if subset[idx] == 'zoomin':
newimg, newboxes, newclasses = globals()[subset[idx]](newimg, newboxes, newclasses, class_id)
else:
newimg, newboxes, newclasses = globals()[subset[idx]](newimg, newboxes, newclasses)
images[k] = newimg
total_boxes[k] = newboxes
total_classes[k] = newclasses
# debug
print("processing round: ", k)
k = k+1
return images.astype(np.uint8),total_boxes,total_classes
'''
Expand one training image into multiple ones (default 15) through augmentation
The augmentation uses random combinations of
a list of augmentation methods.
Args:
img: the image
boxes: an (N,4) array of bounding box coordinates for that image
classes: an (N,1) array of classes for each bounding box
class_id: the class to be augmented
num_aug: how many images to be generated
Output:
An image array of shape (M,W,H,C), where M is the number of chips,
W and H are the dimensions of the image, and C is the number of color
channels. Also returns boxes and classes dictionaries for each corresponding chip
'''
def expand_aug_random(img, boxes, classes, class_id, shift_or_not = False, num_aug = 15):
if shift_or_not == False:
func_list = ['change_brightness', 'change_contrast', 'vertical_flip', 'horizontal_flip', 'zoomin', 'rotate_image_and_boxes_formatted'] # 8
else:
func_list = ['change_brightness', 'change_contrast', 'vertical_flip', 'horizontal_flip', 'zoomin', 'rotate_image_and_boxes_formatted', 'shift_image_formatted']
random_list = random_subsets(func_list, num_aug)
#debug
print('random functions to use: ', random_list)
# debug
w,h, _ = img.shape
images = np.zeros((num_aug,w,h,3))
total_boxes = {}
total_classes = {}
k = 0 # k = [0, num_augI
#new_fun_list = list() # choices of combinations of with fewer than 3 functions
'''
for subset in all_subsets(func_list):
len_sub = len(subset)
if len_sub == 0:
continue
if len_sub > 3:
continue
new_fun_list.append(subset)
# generate random 15 numbers from 0 to len(new_func_list)
random_list = new_fun_list[np.random.randint(0,len(new_fun_list))]
'''
for func_comb in random_list:
len_comb = len(func_comb)
newimg = np.copy(img)
newboxes = np.copy(boxes)
newclasses = np.copy(classes)
for idx in range(len_comb):
if func_comb[idx] == 'zoomin':
newimg, newboxes, newclasses = globals()[func_comb[idx]](newimg, newboxes, newclasses, class_id)
else:
newimg, newboxes, newclasses = globals()[func_comb[idx]](newimg, newboxes, newclasses)
newimg, new_bboxes, new_classes = check_bbox_validity(newimg, newboxes, newclasses)
# check whether there are any bboxes on the image, if not, discard
if len(new_bboxes) != 0:
images[k] = newimg
total_boxes[k] = new_bboxes
total_classes[k] = new_classes
# debug
print("processing round: ", k)
k = k+1
# only retain k images
final_aug_num = len(total_boxes)
print('final augmentation number: ',final_aug_num )
images = images[0:final_aug_num]
return images.astype(np.uint8),total_boxes,total_classes
# check and delete invalid bboxes for an image
# check for all 0s, NaNs, and out of bounds
def check_bbox_validity(img, bboxes, classes):
w = img.shape[0]
h = img.shape[1]
bbox_len = len(bboxes)
new_bboxes = []
new_classes = []
# for each bbox in that image, check and delete if not valid
for i in range(bbox_len):
xmin, ymin, xmax, ymax = bboxes[i]
# check for all 0
if np.all(bboxes[i]==0):
print('BBOX ALL ZEROS')
continue
# check for any NaNs
if np.isnan(bboxes[i]).any():
print('BBOXE HAS NANs')
continue
# check for out of bounds
if xmin < 0 or ymin < 0 or xmax > w and ymax > h:
print('BBOX out of bounds')
continue
# check for bbox len and width
if (xmax - xmin) <= 0 or (ymax - ymin) <= 0:
print('BBOX invalid height or width')
continue
newbox = np.array([xmin, ymin, xmax, ymax]).astype(np.int64)
new_bboxes.append(newbox)
new_classes.append(classes[i])
return img, new_bboxes, new_classes
def random_subsets(lst, num_aug):
#func_list = ['change_brightness', 'change_contrast', 'vertical_flip', 'horizontal_flip', 'zoomin', 'gaussian_blur_formatted', 'shift_image_formatted', 'rotate_image_and_boxes_formatted'] # 8
#all_subset = all_subsets(lst)
#debug
#print('locals, ', locals())
# number of augmentation = # of all combinations
# all_subset contains empty set, so -1
#num_aug = len(list(all_subset)) -1
# debug
#print('one image is augmented into: ', num_aug)
# number of different choices of augmentation done to one image
new_fun_list = list() # choices of combinations of with fewer than 3 functions
for subset in all_subsets(lst):
len_sub = len(subset)
if len_sub == 0:
continue
if len_sub > 3:
continue
new_fun_list.append(subset)
# debug
# manually added "gaussian blur"
new_fun_list.append(('gaussian_blur_formatted',))
new_fun_list.append(('gaussian_blur_formatted', 'horizontal_flip'))
new_fun_list.append(('gaussian_blur_formatted', 'vertical_flip'))
#new_fun_list.append(('gaussian_blur_formatted', 'shift_image_formatted'))
new_fun_list.append(('gaussian_blur_formatted', 'rotate_image_and_boxes_formatted'))
# generate random 15 numbers from 0 to len(new_func_list)
new_fun_arr = np.array(new_fun_list)
random_list = new_fun_arr[random.sample(range(0,len(new_fun_list)), num_aug)]
return list(random_list)
# generate all possible combinations of sublist of a list
def all_subsets(lst):
return chain(*map(lambda x: combinations(lst, x), range(0, len(lst)+1)))
# gamma correction: see http://scikimgt-image.org/docs/dev/api/skimage.exposure.html
# For gamma greater than 1, the histogram will shift towards left and the output image will be darker than the input image.
def change_brightness(img, boxes, classes):
newimg = np.copy(img)
#image = img_as_float(newimg)
gamma_val = random.uniform(0.7,1.2)
newimg = exposure.adjust_gamma(img, gamma=gamma_val, gain=0.9)
return newimg, boxes, classes
def change_contrast(img, boxes, classes):
newimg = np.copy(img)
v_min, v_max = np.percentile(img, (0.2, 99.8))
newimg= exposure.rescale_intensity(img, in_range=(v_min, v_max))
return newimg, boxes, classes
def vertical_flip(img, boxes, classes):
pivot = np.array([int(img.shape[0]/2),int(img.shape[1]/2)])
newimg, newboxes = rotate_image_and_boxes(img, 180, pivot, boxes)
return newimg, newboxes, classes
def horizontal_flip(img, boxes, classes):
newimg = img[:, ::-1]
# flip boxes
pivot = np.array([int(img.shape[0]/2),int(img.shape[1]/2)])
newboxes = []
for box in boxes:
xmin, ymin, xmax, ymax = box
#The 'x' values are not centered by the x-center (shape[0]/2)
#but rather the y-center (shape[1]/2)
xmin = 2 * pivot[1] - xmin
xmax = 2 * pivot[1] - xmax
#ymax -= pivot[0]
'''
bfull = np.array([ [xmin,xmin,xmax,xmax] , [ymin,ymax,ymin,ymax]])
c = np.dot(R,bfull)
c[0] += pivot[1]
c[0] = np.clip(c[0],0,img.shape[1])
c[1] += pivot[0]
c[1] = np.clip(c[1],0,img.shape[0])
if np.all(c[1] == img.shape[0]) or np.all(c[1] == 0):
c[0] = [0,0,0,0]
if np.all(c[0] == img.shape[1]) or np.all(c[0] == 0):
c[1] = [0,0,0,0]
newbox = np.array([np.min(c[0]),np.min(c[1]),np.max(c[0]),np.max(c[1])]).astype(np.int64)
if not (np.all(c[1] == 0) and np.all(c[0] == 0)):
newboxes.append(newbox)
'''
newbox = np.array([xmin, ymin, xmax, ymax]).astype(np.int64)
newboxes.append(newbox)
return newimg, newboxes, classes
'''
# scale img to original input size, say 500 x 500
def image_scale(img, scale):
image_rescaled = rescale(img, scale)
return image_rescaled
'''
# todo: add exception handling
# zoom in areas of interest, say a particular area that containing bounding boxes
# of intersted classes, crop the region
# and rescale to original size
def zoomin(img, boxes, classes, class_id):
# locate a bouding box that contains class_id
rand = random.uniform(0.1,5)
randint = random.randint(1, 10)
# get a list of bbox indexes of things that of interest
ind_list = [i for i, x in enumerate(classes) if str(x) == str(class_id) or x == class_id]
# zoom in a certain scale: 0.5 - 1 of original size
w = img.shape[0]
h = img.shape[1]
# when no index found, gives warning, and crop the center of the image
#assert len(ind_list)!=0, "class not in this chip"
# debug
threshold = 20 # threshold of # of pixels to discard bbox
if len(ind_list) ==0:
#raise ValueError("class not in this chip")
print('class not in this chip, clipping center part of the chip')
bbox_x_center = w/2
bbox_y_center = h /2
else:
# randomly get one object to zoom
ind = np.random.choice(range(len(ind_list)))
# get bbox center:
xmin, ymin, xmax, ymax = boxes[ind]
bbox_x_center = (xmin + xmax)/2
bbox_y_center = (ymin + ymax) /2
scale = random.uniform(0.5,1)
#scale = 0.5
scaled_x = w * scale # cropped area width
scaled_y = h * scale # cropped area height
# force the crop to be square and contain the chosen bbox
if bbox_x_center < 1/2 * w:
# start from leftmost
startx = 0
endx = int(startx + scaled_x)
# should consider the case: if endx < xmax
# but in harvey's case, trash heaps/bridges/ roads won't be larger than 150 pixel
else:
endx = w
startx = int(w - scaled_x)
if bbox_y_center < 1/2 * h:
starty = 0
endy = int(starty + scaled_y)
else:
endy = h
starty = int(h - scaled_y)
# crop a region, centered on the bbox of that ind
'''
startx = int(w - scaled_x/2) if (w - scaled_x/2) > 0 else 0
starty = int(h - scaled_y/2) if (h - scaled_y/2) > 0 else 0
endx = w if (w + scaled_x/2) > w else int(w + scaled_x/2)
endy = h if (h + scaled_y/2) > h else int(h + scaled_y/2)
'''
# force the crop to be square
'''
actual_x = endx - startx
actual_y = endy - starty
scaled_x = min(actual_x, actual_y)
scaled_y = scaled_x
endx = startx
'''
newimg = img[startx: endx, starty: endy]
image_rescaled = resize(newimg, (w, h), preserve_range=True)
# debug
#print('startx, endx', startx, endx)
#print('starty, endy', starty, endy)
# scale bounding boxes inside the cropped area
# see https://github.com/DIUx-xView/data_utilities/blob/master/wv_util.py
newboxes = []
newclasses = []
# crop bboxes and scale them
boxes = np.array(boxes) # change to np array, otherwise, boxes[:,0] cannot access list
x = np.logical_or( np.logical_and( (boxes[:,0]<endy), (boxes[:,0]>starty)),
np.logical_and((boxes[:,2]<endy), (boxes[:,2]>starty)))
out = boxes[x]
y = np.logical_or( np.logical_and( (out[:,1]<endx), (out[:,1]>startx)),
np.logical_and((out[:,3]<endx), (out[:,3]>startx)))
outn = out[y]
out = np.transpose(np.vstack((np.clip(outn[:,0]-starty,0,scaled_y),
np.clip(outn[:,1]-startx,0, scaled_x),
np.clip(outn[:,2]-starty,0,scaled_y),
np.clip(outn[:,3]-startx,0, scaled_x))))
box_classes = classes[x][y]
# debug
# remove bboxes that only have less than 20 pixels in w/h left in the image
# only loop through ones that have 0 or wn/hn in the 4 coordinates
rows_to_delete = list()
for m in range(out.shape[0]):
if(np.any([out[m] == 0]) or np.any([out[m] == scaled_x]) or np.any([out[m] == scaled_y])):
# see whether the width of bbox is less than 10 pixels?
bbox_w = out[m][2] - out[m][0]
bbox_h = out[m][3] - out[m][1]
if bbox_w < threshold or bbox_h < threshold:
rows_to_delete.append(m)
# discard this bbox
out = np.delete(out, rows_to_delete, axis=0)
box_classes = np.delete(box_classes, rows_to_delete, axis=0)
if out.shape[0] != 0:
newboxes = out
newclasses = box_classes
else:
newboxes= np.array([[0,0,0,0]])
newclasses = np.array([0])
# now rescale each bouding boxes
enlarge_boxes = []
for box in newboxes:
xmin, ymin, xmax, ymax = box
xmin = xmin * (1/scale)
ymin = ymin * (1/scale)
xmax = xmax * (1/scale)
ymax = ymax * (1/scale)
newbox = np.array([xmin, ymin, xmax, ymax]).astype(np.int64)
enlarge_boxes.append(newbox)
return image_rescaled,enlarge_boxes, newclasses
# add gaussian noises
# should avoid producing negative pixel values
def gaussian_noise(img, boxes, classes):
#newimg = random_noise(img, mode='gaussian', seed=None, clip=True, **kwargs)
mean = 0
var = 1
noise = np.random.normal(mean, var,
img.shape)
newimg = img + noise
#newimg[newimg < 0] = 0
#newimg = newimg.clip(0)
newimg = np.array(newimg.clip(0)).astype(np.uint8)
return newimg, boxes, classes
def median_blur(img, boxes, classes):
disk_size = np.random.choice(range(2, 6))
newimg = np.copy(img)
for i in range(img.shape[2]):
newimg[:,:,i] = median(img[:,:,i], disk(disk_size))
return newimg, boxes, classes
# reload rotate_image_and_boxes function to fit in chaining of
# a series of augmentation functions
def rotate_image_and_boxes_formatted(img, boxes, classes):
"""
Rotates an image and corresponding bounding boxes. Bounding box rotations are kept axis-aligned,
so multiples of non 90-degrees changes the area of the bounding box.
Args:
img: the image to be rotated in array format
deg: an integer representing degree of rotation
pivot: the axis of rotation. By default should be the center of an image, but this can be changed.
boxes: an (N,4) array of boxes for the image
Output:
Returns the rotated image array along with correspondingly rotated bounding boxes
"""
# if deg < 0:
# deg = 360-deg
# deg = int(deg)
# angle = 360-deg
# randomly generate degree
deg = np.random.randint(-10,10)
angle = 360 - deg
pivot = np.array([int(img.shape[0]/2),int(img.shape[1]/2)])
padX = [img.shape[0] - pivot[0], pivot[0]]
padY = [img.shape[1] - pivot[1], pivot[1]]
imgP = np.pad(img, [padY, padX, [0,0]], 'constant').astype(np.uint8)
#scipy ndimage rotate takes ~.7 seconds
#imgR = ndimage.rotate(imgP, angle, reshape=False)
#PIL rotate uses ~.01 seconds
imgR = Image.fromarray(imgP).rotate(angle)
imgR = np.array(imgR)
theta = deg * (np.pi/180)
R = np.array([[np.cos(theta),-np.sin(theta)],[np.sin(theta),np.cos(theta)]])
# [(cos(theta), -sin(theta))] DOT [xmin, xmax] = [xmin*cos(theta) - ymin*sin(theta), xmax*cos(theta) - ymax*sin(theta)]
# [sin(theta), cos(theta)] [ymin, ymax] [xmin*sin(theta) + ymin*cos(theta), xmax*cos(theta) + ymax*cos(theta)]
newboxes = []
# debug
new_classes = []
for i in range(len(boxes)):
box = boxes[i]
xmin, ymin, xmax, ymax = box
#The 'x' values are not centered by the x-center (shape[0]/2)
#but rather the y-center (shape[1]/2)
xmin -= pivot[1]
xmax -= pivot[1]
ymin -= pivot[0]
ymax -= pivot[0]
bfull = np.array([ [xmin,xmin,xmax,xmax] , [ymin,ymax,ymin,ymax]])
c = np.dot(R,bfull)
c[0] += pivot[1]
c[0] = np.clip(c[0],0,img.shape[1])
c[1] += pivot[0]
c[1] = np.clip(c[1],0,img.shape[0])
if np.all(c[1] == img.shape[0]) or np.all(c[1] == 0):
c[0] = [0,0,0,0]
if np.all(c[0] == img.shape[1]) or np.all(c[0] == 0):
c[1] = [0,0,0,0]
newbox = np.array([np.min(c[0]),np.min(c[1]),np.max(c[0]),np.max(c[1])]).astype(np.int64)
if not (np.all(c[1] == 0) and np.all(c[0] == 0)):
newboxes.append(newbox)
new_classes.append(classes[i])
return imgR[padY[0] : -padY[1], padX[0] : -padX[1]], newboxes, new_classes
# debug
# reload shift image function to be ready for chaining
# note: bboxes may change due to the shift
# therefore, classes were modified accordingly
def shift_image_formatted(image,bbox, classes):
"""
Shift an image by a random amount on the x and y axis drawn from discrete
uniform distribution with parameter min(shape/10)
Args:
image: the image to be shifted in array format
bbox: an (N,4) array of boxes for the image
Output:
The shifted image and corresponding boxes
"""
shape = image.shape[:2]
# debug
# do more aggressive shift
#maxdelta = min(shape)/10
maxdelta = min(shape)/5
dx,dy = np.random.randint(-maxdelta,maxdelta,size=(2))
newimg = np.zeros(image.shape,dtype=np.uint8)
nb = []
new_classes = []
bbox_count = len(bbox)
# debug
#i = 0 # index of box in bbox
for i in range(len(bbox)):
box = bbox[i]
xmin,xmax = np.clip((box[0]+dy,box[2]+dy),0,shape[1])
ymin,ymax = np.clip((box[1]+dx,box[3]+dx),0,shape[0])
#we only add the box if they are not all 0
if not(xmin==0 and xmax ==0 and ymin==0 and ymax ==0):
nb.append([xmin,ymin,xmax,ymax])
new_classes.append(classes[i])
newimg[max(dx,0):min(image.shape[0],image.shape[0]+dx),
max(dy,0):min(image.shape[1],image.shape[1]+dy)] = \
image[max(-dx,0):min(image.shape[0],image.shape[0]-dx),
max(-dy,0):min(image.shape[1],image.shape[1]-dy)]
threshold = 30
w = newimg.shape[0]
h = newimg.shape[1]
# debug
# remove bboxes that only have less than 20 pixels in w/h left in the image
# only loop through ones that have 0 or wn/hn in the 4 coordinates
rows_to_delete = list()
nb = np.array(nb)
for m in range(nb.shape[0]):
if(np.any([nb[m] == 0]) or np.any([nb[m] == w ]) or np.any([nb[m] == h])):
# see whether the width of bbox is less than 10 pixels?
bbox_w = nb[m][2] - nb[m][0]
bbox_h = nb[m][3] - nb[m][1]
if bbox_w < threshold or bbox_h < threshold:
rows_to_delete.append(m)
# discard this bbox
nb = np.delete(nb, rows_to_delete, axis=0)
new_classes = np.delete(new_classes, rows_to_delete, axis=0)
return newimg, nb, new_classes
# reloaded gaussian blue
def gaussian_blur_formatted(img, bboxes, classes):
"""
Use a gaussian filter to blur an image
Args:
img: image to be augmented in array format
max_sigma: the maximum variance for gaussian blurring
Output:
Augmented image
"""
max_sigma=1
new_img = img.clip(0, 255)
return filters.gaussian(new_img,np.random.random()*max_sigma,multichannel=True)*255, bboxes,classes
def rotate_image_and_boxes(img, deg, pivot, boxes):
"""
Rotates an image and corresponding bounding boxes. Bounding box rotations are kept axis-aligned,
so multiples of non 90-degrees changes the area of the bounding box.
Args:
img: the image to be rotated in array format
deg: an integer representing degree of rotation
pivot: the axis of rotation. By default should be the center of an image, but this can be changed.
boxes: an (N,4) array of boxes for the image
Output:
Returns the rotated image array along with correspondingly rotated bounding boxes
"""
if deg < 0:
deg = 360-deg
deg = int(deg)
angle = 360-deg
padX = [img.shape[0] - pivot[0], pivot[0]]
padY = [img.shape[1] - pivot[1], pivot[1]]
imgP = np.pad(img, [padY, padX, [0,0]], 'constant').astype(np.uint8)
#scipy ndimage rotate takes ~.7 seconds
#imgR = ndimage.rotate(imgP, angle, reshape=False)
#PIL rotate uses ~.01 seconds
imgR = Image.fromarray(imgP).rotate(angle)
imgR = np.array(imgR)
theta = deg * (np.pi/180)
R = np.array([[np.cos(theta),-np.sin(theta)],[np.sin(theta),np.cos(theta)]])
# [(cos(theta), -sin(theta))] DOT [xmin, xmax] = [xmin*cos(theta) - ymin*sin(theta), xmax*cos(theta) - ymax*sin(theta)]
# [sin(theta), cos(theta)] [ymin, ymax] [xmin*sin(theta) + ymin*cos(theta), xmax*cos(theta) + ymax*cos(theta)]
newboxes = []
for box in boxes:
xmin, ymin, xmax, ymax = box
#The 'x' values are not centered by the x-center (shape[0]/2)
#but rather the y-center (shape[1]/2)
xmin -= pivot[1]
xmax -= pivot[1]
ymin -= pivot[0]
ymax -= pivot[0]
bfull = np.array([ [xmin,xmin,xmax,xmax] , [ymin,ymax,ymin,ymax]])
c = np.dot(R,bfull)
c[0] += pivot[1]
c[0] = np.clip(c[0],0,img.shape[1])
c[1] += pivot[0]
c[1] = np.clip(c[1],0,img.shape[0])
if np.all(c[1] == img.shape[0]) or np.all(c[1] == 0):
c[0] = [0,0,0,0]
if np.all(c[0] == img.shape[1]) or np.all(c[0] == 0):
c[1] = [0,0,0,0]
newbox = np.array([np.min(c[0]),np.min(c[1]),np.max(c[0]),np.max(c[1])]).astype(np.int64)
if not (np.all(c[1] == 0) and np.all(c[0] == 0)):
newboxes.append(newbox)
return imgR[padY[0] : -padY[1], padX[0] : -padX[1]], newboxes
def shift_image(image,bbox):
"""
Shift an image by a random amount on the x and y axis drawn from discrete
uniform distribution with parameter min(shape/10)
Args:
image: the image to be shifted in array format
bbox: an (N,4) array of boxes for the image
Output:
The shifted image and corresponding boxes
"""
shape = image.shape[:2]
# do more aggressive shift
#maxdelta = min(shape)/10
maxdelta = min(shape)/5
dx,dy = np.random.randint(-maxdelta,maxdelta,size=(2))
newimg = np.zeros(image.shape,dtype=np.uint8)
nb = []
for box in bbox:
xmin,xmax = np.clip((box[0]+dy,box[2]+dy),0,shape[1])
ymin,ymax = np.clip((box[1]+dx,box[3]+dx),0,shape[0])
#we only add the box if they are not all 0
if not(xmin==0 and xmax ==0 and ymin==0 and ymax ==0):
nb.append([xmin,ymin,xmax,ymax])
newimg[max(dx,0):min(image.shape[0],image.shape[0]+dx),
max(dy,0):min(image.shape[1],image.shape[1]+dy)] = \
image[max(-dx,0):min(image.shape[0],image.shape[0]-dx),
max(-dy,0):min(image.shape[1],image.shape[1]-dy)]
return newimg, nb
# todo: addativeGaussianNoise
def salt_and_pepper(img,prob=.005):
"""
Applies salt and pepper noise to an image with given probability for both.
Args:
img: the image to be augmented in array format
prob: the probability of applying noise to the image
Output:
Augmented image
"""
newimg = np.copy(img)
whitemask = np.random.randint(0,int((1-prob)*200),size=img.shape[:2])
blackmask = np.random.randint(0,int((1-prob)*200),size=img.shape[:2])
newimg[whitemask==0] = 255
newimg[blackmask==0] = 0
return newimg
# reduce max_sigma = 1.5 to 0.5
def gaussian_blur(img, max_sigma=1):
"""
Use a gaussian filter to blur an image
Args:
img: image to be augmented in array format
max_sigma: the maximum variance for gaussian blurring
Output:
Augmented image
"""
return filters.gaussian(img,np.random.random()*max_sigma,multichannel=True)*255
# added
# draw bboxes with bbox uid
# The text size is suitable for small images such as 256 * 256
def draw_bboxes_withindex(img,boxes, uids):
"""
A helper function to draw bounding box rectangles on images
Args:
img: image to be drawn on in array format
boxes: An (N,4) array of bounding boxes
Output:
Image with drawn bounding boxes
"""
source = Image.fromarray(img)
draw = ImageDraw.Draw(source)
w2,h2 = (img.shape[0],img.shape[1])
font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSerif.ttf', 15)
#font = ImageFont.truetype('arial.ttf', 24)
idx = 0
for b in boxes:
xmin,ymin,xmax,ymax = b
for j in range(3):
draw.rectangle(((xmin+j, ymin+j), (xmax+j, ymax+j)), outline="red")
draw.text((xmin+30, ymin+30), str(int(uids[idx])), font = font, fill = "orange")
idx +=1
return source
# draw bboxes with multiple classes with uids
# red for damaged buildings, and green for non-damaged buildings.
def draw_bboxes_withindex_multiclass(img,boxes,classes, uids):
"""
A helper function to draw bounding box rectangles on images
Args:
img: image to be drawn on in array format
boxes: An (N,4) array of bounding boxes
Output:
Image with drawn bounding boxes
"""
source = Image.fromarray(img)
draw = ImageDraw.Draw(source)
w2,h2 = (img.shape[0],img.shape[1])
font = ImageFont.truetype('/usr/share/fonts/truetype/freefont/FreeSerif.ttf', 15)
#font = ImageFont.truetype('arial.ttf', 24)
idx = 0
for b in boxes:
xmin,ymin,xmax,ymax = b
if classes[idx] == 1:
for j in range(3):
draw.rectangle(((xmin+j, ymin+j), (xmax+j, ymax+j)), outline="red")
else:
for j in range(3):
draw.rectangle(((xmin+j, ymin+j), (xmax+j, ymax+j)), outline="green")
draw.text((xmin+30, ymin+30), str(int(uids[idx])), font = font, fill = "orange")
idx +=1
return source
def draw_bboxes(img,boxes):
"""
A helper function to draw bounding box rectangles on images
Args:
img: image to be drawn on in array format
boxes: An (N,4) array of bounding boxes
Output:
Image with drawn bounding boxes
"""
source = Image.fromarray(img)
draw = ImageDraw.Draw(source)
w2,h2 = (img.shape[0],img.shape[1])
idx = 0
for b in boxes:
xmin,ymin,xmax,ymax = b
for j in range(3):
draw.rectangle(((xmin+j, ymin+j), (xmax+j, ymax+j)), outline="red")
return source