-
Notifications
You must be signed in to change notification settings - Fork 82
/
Copy pathmatrix_exponentiation.cpp
81 lines (68 loc) · 1.84 KB
/
matrix_exponentiation.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
// C++ program to find value of f(n) where f(n)
// is defined as
// F(n) = F(n-1) + F(n-2) + F(n-3), n >= 3
// Base Cases :
// F(0) = 0, F(1) = 1, F(2) = 1
#include<bits/stdc++.h>
#define ll long long
using namespace std;
// A utility function to multiply two matrices
// a[][] and b[][]. Multiplication result is
// stored back in b[][]
void multiply(ll a[3][3], ll b[3][3])
{
// Creating an auxiliary matrix to store elements
// of the multiplication matrix
ll mul[3][3];
for (ll i = 0; i < 3; i++)
{
for (ll j = 0; j < 3; j++)
{
mul[i][j] = 0;
for (ll k = 0; k < 3; k++)
mul[i][j] += a[i][k]*b[k][j];
}
}
// storing the multiplication result in a[][]
for (ll i=0; i<3; i++)
for (ll j=0; j<3; j++)
a[i][j] = mul[i][j]; // Updating our matrix
}
// Function to compute F raise to power n-2.
ll power(ll F[3][3], ll n)
{
ll M[3][3] = {{1,1,1}, {1,0,0}, {0,1,0}};
// Multiply it with initial values i.e with
// F(0) = 0, F(1) = 1, F(2) = 1
if (n==1)
return F[0][0] + F[0][1];
power(F, n/2);
multiply(F, F);
if (n%2 != 0)
multiply(F, M);
// Multiply it with initial values i.e with
// F(0) = 0, F(1) = 1, F(2) = 1
return F[0][0] + F[0][1] ;
}
// Return n'th term of a series defined using below
// recurrence relation.
// f(n) is defined as
// f(n) = f(n-1) + f(n-2) + f(n-3), n>=3
// Base Cases :
// f(0) = 0, f(1) = 1, f(2) = 1
ll findNthTerm(ll n)
{
ll F[3][3] = {{1,1,1}, {1,0,0}, {0,1,0}} ;
//Base cases
if(n==0)
return 0;
if(n==1 || n==2)
return 1;
return power(F, n-2);
}
int main()
{
ll n = 10;
cout << "F(10) is " << findNthTerm(n);
return 0;
}