-
Notifications
You must be signed in to change notification settings - Fork 0
/
objectdetec.py
61 lines (50 loc) · 2.06 KB
/
objectdetec.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
import cv2
# Load the class names
classNames = []
classFile = "coco.names"
with open(classFile, "rt") as f:
classNames = f.read().rstrip("\n").split("\n")
# Load the model configuration and weights
configPath = "ssd_mobilenet_v3_large_coco_2020_01_14.pbtxt"
weightsPath = "frozen_inference_graph.pb"
# Set up the model
net = cv2.dnn_DetectionModel(weightsPath, configPath)
net.setInputSize(320, 320)
net.setInputScale(1.0 / 127.5)
net.setInputMean((127.5, 127.5, 127.5))
net.setInputSwapRB(True)
# Function to get objects and draw bounding boxes
def getObjects(img, thres, nms, draw=True, objects=[]):
classIds, confs, bbox = net.detect(img, confThreshold=thres, nmsThreshold=nms)
objectInfo = []
if len(classIds) != 0:
for classId, confidence, box in zip(classIds.flatten(), confs.flatten(), bbox):
className = classNames[classId - 1]
if className in objects:
objectInfo.append([box, className])
if draw:
cv2.rectangle(img, box, color=(0, 255, 0), thickness=2)
cv2.putText(img, classNames[classId - 1].upper(), (box[0] + 10, box[1] + 30),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
cv2.putText(img, str(round(confidence * 100, 2)), (box[0] + 200, box[1] + 30),
cv2.FONT_HERSHEY_COMPLEX, 1, (0, 255, 0), 2)
return img, objectInfo
# Initialize the IP camera feed
rtsp_url = f"rtsp://admin:admin@192.168.1.216:554/stream1"
cap = cv2.VideoCapture(rtsp_url)
if not cap.isOpened():
print("Error: Could not open camera.")
exit()
# Set the window size
#cap.set(3, 640)
#cap.set(4, 480)
while True:
success, img = cap.read()
result, objectInfo = getObjects(img, 0.45, 0.2,objects=['person'])
cv2.imshow("IP Camera Feed", img)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
#gudide with fiules
#https://core-electronics.com.au/guides/object-identify-raspberry-pi/#