-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmake_model.py
111 lines (80 loc) · 3.38 KB
/
make_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
import matplotlib.pyplot as plt
import matplotlib.image as mpimg
import numpy as np
import glob
import pickle
from lesson_lib import *
from sklearn.preprocessing import StandardScaler
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split
from sklearn.utils import shuffle
if __name__ == '__main__':
data_path = 'vehicle_data/'
cars = glob.glob(data_path + 'vehicles/*/*.png')
notcars = glob.glob(data_path + 'non-vehicles/*/*.png')
print('FOUND %d Vehicle images' % len(cars))
print('FOUND %d Non Vehicle images' % len(notcars))
sample_size = -1
cars = cars[0:sample_size]
notcars = notcars[0:sample_size]
all_images = cars + notcars
print('Training on a sample size of %d' % sample_size)
y = np.hstack([np.ones(len(cars)), np.zeros(len(notcars))])
# PARAMETERS
#============================================================
orient = 8
pix_per_cell = 8
cell_per_block = 2
hog_depth = 0
useColor = True
useSpatial = True
spatial_size = (32, 32)
hist_bins = 5
colorSpace = 'RGB2YUV'
#============================================================
params = dict([('orient', orient),
('pix_per_cell', pix_per_cell),
('cell_per_block', cell_per_block),
('useColor', useColor),
('useSpatial', useSpatial),
('colorSpace', colorSpace),
('hog_depth', hog_depth),
('spatial_size', spatial_size),
('hist_bins', hist_bins)])
X = []
for i, image in enumerate(all_images):
image = mpimg.imread(image)
ctrans_tosearch = convert_color(image, conv=colorSpace)
ch1 = ctrans_tosearch[:,:,0]
ch2 = ctrans_tosearch[:,:,1]
ch3 = ctrans_tosearch[:,:,2]
if hog_depth == 'ALL':
hog1 = get_hog_features(ch1, orient, pix_per_cell, cell_per_block, feature_vec=False).ravel()
hog2 = get_hog_features(ch2, orient, pix_per_cell, cell_per_block, feature_vec=False).ravel()
hog3 = get_hog_features(ch3, orient, pix_per_cell, cell_per_block, feature_vec=False).ravel()
features = np.hstack((hog1.ravel(), hog2.ravel(), hog3.ravel()))
else:
features = get_hog_features(ctrans_tosearch[:,:,hog_depth], orient, pix_per_cell, cell_per_block, feature_vec=False).ravel()
if useSpatial:
spatial_features = bin_spatial(ctrans_tosearch, size=spatial_size).reshape(-1,)
features = np.hstack((features, spatial_features)).reshape((1, -1))
if useColor:
hist_features = color_hist(ctrans_tosearch, nbins=hist_bins).reshape((1, -1))
features = np.hstack((features, hist_features)).reshape((1, -1))
features = features.reshape(-1)
X.append(features)
X = np.array(X)
print('X, y shapes:')
print(X.shape, y.shape)
X, y = shuffle(X, y)
print('SHUFFLE COMPLETE')
X_scaler = StandardScaler().fit(X)
scaled_X = X_scaler.transform(X)
rand_state = np.random.randint(0, 100)
X_train, X_test, y_train, y_test = train_test_split(scaled_X, y, test_size=0.2, random_state=rand_state)
svc = LinearSVC()
svc = svc.fit(X_train, y_train)
print('Test Accuracy of SVC = ', round(svc.score(X_test, y_test), 4))
with open('Models/model_col_hog.pkl', 'wb') as f:
pickle.dump([svc, X_scaler, params], f)
print('MODEL SAVED')