-
Notifications
You must be signed in to change notification settings - Fork 84
/
main.py
266 lines (221 loc) · 10.7 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
from __future__ import division, print_function, unicode_literals
import argparse
import h5py
import numpy as np
import tensorflow as tf
from sklearn.metrics import precision_recall_fscore_support
from sklearn.metrics import accuracy_score
from sklearn.cross_validation import train_test_split
from loss import spread_loss, cross_entropy, margin_loss
from network import baseline_model_kimcnn, baseline_model_cnn, capsule_model_A, capsule_model_B
from sklearn.utils import shuffle
tf.reset_default_graph()
np.random.seed(0)
tf.set_random_seed(0)
parser = argparse.ArgumentParser()
parser.add_argument('--embedding_type', type=str, default='static',
help='Options: rand (randomly initialized word embeddings), static (pre-trained embeddings from word2vec, static during learning), nonstatic (pre-trained embeddings, tuned during learning), multichannel (two embedding channels, one static and one nonstatic)')
parser.add_argument('--dataset', type=str, default='reuters_multilabel_dataset',
help='Options: reuters_multilabel_dataset, MR_dataset, SST_dataset')
parser.add_argument('--loss_type', type=str, default='margin_loss',
help='margin_loss, spread_loss, cross_entropy')
parser.add_argument('--model_type', type=str, default='capsule-B',
help='CNN, KIMCNN, capsule-A, capsule-B')
parser.add_argument('--has_test', type=int, default=1, help='If data has test, we use it. Otherwise, we use CV on folds')
parser.add_argument('--has_dev', type=int, default=1, help='If data has dev, we use it, otherwise we split from train')
parser.add_argument('--num_epochs', type=int, default=20, help='Number of training epochs')
parser.add_argument('--batch_size', type=int, default=25, help='Batch size for training')
parser.add_argument('--use_orphan', type=bool, default='True', help='Add orphan capsule or not')
parser.add_argument('--use_leaky', type=bool, default='False', help='Use leaky-softmax or not')
parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate for training')#CNN 0.0005
parser.add_argument('--margin', type=float, default=0.2, help='the initial value for spread loss')
import json
args = parser.parse_args()
params = vars(args)
print(json.dumps(params, indent = 2))
def load_data(dataset):
train, train_label = [],[]
dev, dev_label = [],[]
test, test_label = [],[]
f = h5py.File(dataset+'.hdf5', 'r')
print('loading data...')
print(dataset)
print("Keys: %s" % f.keys())
w2v = list(f['w2v'])
train = list(f['train'])
train_label = list(f['train_label'])
if args.use_orphan:
args.num_classes = max(train_label) + 1
if len(list(f['test'])) == 0:
args.has_test = 0
else:
args.has_test = 1
test = list(f['test'])
test_label = list(f['test_label'])
for i, v in enumerate(train):
if np.sum(v) == 0:
del(train[i])
del(train_label[i])
for i, v in enumerate(test):
if np.sum(v) == 0:
del(test[i])
del(test_label[i])
train, dev, train_label, dev_label = train_test_split(train, train_label, test_size=0.1, random_state=0)
return train, train_label, test, test_label, dev, dev_label, w2v
class BatchGenerator(object):
"""Generate and hold batches."""
def __init__(self, dataset,label, batch_size,input_size, is_shuffle=True):
self._dataset = dataset
self._label = label
self._batch_size = batch_size
self._cursor = 0
self._input_size = input_size
if is_shuffle:
index = np.arange(len(self._dataset))
np.random.shuffle(index)
self._dataset = np.array(self._dataset)[index]
self._label = np.array(self._label)[index]
else:
self._dataset = np.array(self._dataset)
self._label = np.array(self._label)
def next(self):
if self._cursor + self._batch_size > len(self._dataset):
self._cursor = 0
"""Generate a single batch from the current cursor position in the data."""
batch_x = self._dataset[self._cursor : self._cursor + self._batch_size,:]
batch_y = self._label[self._cursor : self._cursor + self._batch_size]
self._cursor += self._batch_size
return batch_x, batch_y
train, train_label, test, test_label, dev, dev_label, w2v= load_data(args.dataset)
args.vocab_size = len(w2v)
args.vec_size = w2v[0].shape[0]
args.max_sent = len(train[0])
print('max sent: ', args.max_sent)
print('vocab size: ', args.vocab_size)
print('vec size: ', args.vec_size)
print('num_classes: ', args.num_classes)
train, train_label = shuffle(train, train_label)
with tf.device('/cpu:0'):
global_step = tf.train.get_or_create_global_step()
label = ['-1', 'earn', 'money-fx', 'trade', 'acq', 'grain', 'interest', 'crude', 'ship']
label = map(str,label)
args.max_sent = 200
threshold = 0.5
X = tf.placeholder(tf.int32, [args.batch_size, args.max_sent], name="input_x")
y = tf.placeholder(tf.int64, [args.batch_size, args.num_classes], name="input_y")
is_training = tf.placeholder_with_default(False, shape=())
learning_rate = tf.placeholder(dtype='float32')
margin = tf.placeholder(shape=(),dtype='float32')
l2_loss = tf.constant(0.0)
w2v = np.array(w2v,dtype=np.float32)
if args.embedding_type == 'rand':
W1 = tf.Variable(tf.random_uniform([args.vocab_size, args.vec_size], -0.25, 0.25),name="Wemb")
X_embedding = tf.nn.embedding_lookup(W1, X)
X_embedding = X_embedding[...,tf.newaxis]
if args.embedding_type == 'static':
W1 = tf.Variable(w2v, trainable = False)
X_embedding = tf.nn.embedding_lookup(W1, X)
X_embedding = X_embedding[...,tf.newaxis]
if args.embedding_type == 'nonstatic':
W1 = tf.Variable(w2v, trainable = True)
X_embedding = tf.nn.embedding_lookup(W1, X)
X_embedding = X_embedding[...,tf.newaxis]
if args.embedding_type == 'multi-channel':
W1 = tf.Variable(w2v, trainable = True)
W2 = tf.Variable(w2v, trainable = False)
X_1 = tf.nn.embedding_lookup(W1, X)
X_2 = tf.nn.embedding_lookup(W2, X)
X_1 = X_1[...,tf.newaxis]
X_2 = X_2[...,tf.newaxis]
X_embedding = tf.concat([X_1,X_2],axis=-1)
tf.logging.info("input dimension:{}".format(X_embedding.get_shape()))
if args.model_type == 'capsule-A':
poses, activations = capsule_model_A(X_embedding, args.num_classes)
if args.model_type == 'capsule-B':
poses, activations = capsule_model_B(X_embedding, args.num_classes)
if args.model_type == 'CNN':
poses, activations = baseline_model_cnn(X_embedding, args.num_classes)
if args.model_type == 'KIMCNN':
poses, activations = baseline_model_kimcnn(X_embedding, args.max_sent, args.num_classes)
if args.loss_type == 'spread_loss':
loss = spread_loss(y, activations, margin)
if args.loss_type == 'margin_loss':
loss = margin_loss(y, activations)
if args.loss_type == 'cross_entropy':
loss = cross_entropy(y, activations)
y_pred = tf.argmax(activations, axis=1, name="y_proba")
correct = tf.equal(tf.argmax(y, axis=1), y_pred, name="correct")
accuracy = tf.reduce_mean(tf.cast(correct, tf.float32), name="accuracy")
optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)
training_op = optimizer.minimize(loss, name="training_op")
gradients, variables = zip(*optimizer.compute_gradients(loss))
grad_check = [tf.check_numerics(g, message='Gradient NaN Found!')
for g in gradients if g is not None] + [tf.check_numerics(loss, message='Loss NaN Found')]
with tf.control_dependencies(grad_check):
training_op = optimizer.apply_gradients(zip(gradients, variables), global_step=global_step)
sess = tf.InteractiveSession()
from keras import utils
n_iterations_per_epoch = len(train) // args.batch_size
n_iterations_test = len(test) // args.batch_size
n_iterations_dev = len(dev) // args.batch_size
mr_train = BatchGenerator(train,train_label, args.batch_size, 0)
mr_dev = BatchGenerator(dev,dev_label, args.batch_size, 0)
mr_test = BatchGenerator(test,test_label, args.batch_size, 0, is_shuffle=False)
best_model = None
best_epoch = 0
best_acc_val = 0.
init = tf.global_variables_initializer()
sess.run(init)
lr = args.learning_rate
m = args.margin
for epoch in range(args.num_epochs):
for iteration in range(1, n_iterations_per_epoch + 1):
X_batch, y_batch = mr_train.next()
y_batch = utils.to_categorical(y_batch, args.num_classes)
_, loss_train, probs, capsule_pose = sess.run(
[training_op, loss, activations, poses],
feed_dict={X: X_batch[:,:args.max_sent],
y: y_batch,
is_training: True,
learning_rate:lr,
margin:m})
print("\rIteration: {}/{} ({:.1f}%) Loss: {:.5f}".format(
iteration, n_iterations_per_epoch,
iteration * 100 / n_iterations_per_epoch,
loss_train),
end="")
loss_vals, acc_vals = [], []
for iteration in range(1, n_iterations_dev + 1):
X_batch, y_batch = mr_dev.next()
y_batch = utils.to_categorical(y_batch, args.num_classes)
loss_val, acc_val = sess.run(
[loss, accuracy],
feed_dict={X: X_batch[:,:args.max_sent],
y: y_batch,
is_training: False,
margin:m})
loss_vals.append(loss_val)
acc_vals.append(acc_val)
loss_val, acc_val = np.mean(loss_vals), np.mean(acc_vals)
print("\rEpoch: {} Val accuracy: {:.1f}% Loss: {:.4f}".format(
epoch + 1, acc_val * 100, loss_val))
preds_list, y_list = [], []
for iteration in range(1, n_iterations_test + 1):
X_batch, y_batch = mr_test.next()
probs = sess.run([activations],
feed_dict={X:X_batch[:,:args.max_sent],
is_training: False})
preds_list = preds_list + probs[0].tolist()
y_list = y_list + y_batch.tolist()
y_list = np.array(y_list)
preds_probs = np.array(preds_list)
preds_probs[np.where( preds_probs >= threshold )] = 1.0
preds_probs[np.where( preds_probs < threshold )] = 0.0
[precision, recall, F1, support] = \
precision_recall_fscore_support(y_list, preds_probs, average='samples')
acc = accuracy_score(y_list, preds_probs)
print ('\rER: %.3f' % acc, 'Precision: %.3f' % precision, 'Recall: %.3f' % recall, 'F1: %.3f' % F1)
if args.model_type == 'CNN' or args.model_type == 'KIMCNN':
lr = max(1e-6, lr * 0.8)
if args.loss_type == 'margin_loss':
m = min(0.9, m + 0.1)