-
Notifications
You must be signed in to change notification settings - Fork 63
/
simd.h
462 lines (419 loc) · 15.8 KB
/
simd.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
// This file is part of the uSTL library, an STL implementation.
//
// Copyright (c) 2005 by Mike Sharov <msharov@users.sourceforge.net>
// This file is free software, distributed under the MIT License.
//
/// \file simd.h
/// \brief SIMD-type algorithms, with hardware acceleration, if available.
///
/// All algorithms are container-based because iterator syntax is just too
/// damn verbose and because the specializations need to be able to tell
/// how many elements are in the container in order to choose proper SIMD
/// instruction set (i.e.: 4 floats select SSE, while 2 floats select 3dNow!)
/// Specializations are only for the tuple template because the container
/// must be of a fixed and compile-time-known size for the compiler to be
/// able to choose the specialization.
#pragma once
#include "ulimits.h"
#if HAVE_MATH_H
#include <math.h>
#endif
namespace ustl {
namespace simd {
//----------------------------------------------------------------------
// Generic algorithms
//----------------------------------------------------------------------
/// Applies \p op to each element in \p op1.
template <typename Ctr, typename UnaryOperation>
inline void packop (Ctr& op1, UnaryOperation op)
{
foreach (typename Ctr::iterator, i, op1)
op (*i);
}
/// Applies \p op to each element in \p op1 and \p op2 and stores in \p op2.
template <typename Ctr, typename BinaryOperation>
inline void packop (const Ctr& op1, Ctr& op2, BinaryOperation op)
{
assert (op2.size() <= op1.size());
typename Ctr::const_iterator i1 (op1.begin());
typename Ctr::iterator i2 (op2.begin());
for (; i2 != op2.end(); ++i1, ++i2)
*i2 = op (*i2, *i1);
}
/// Applies \p op to corresponding elements in \p op1 and \p op2 and stores in \p result.
template <typename Ctr, typename BinaryOperation>
inline void packop (const Ctr& op1, const Ctr& op2, Ctr& result, BinaryOperation op)
{
assert (op1.size() <= op2.size() && op1.size() <= result.size());
passign (op1, result);
op (op2, result);
}
/// Copies \p op1 into \p result.
template <typename Ctr>
inline void passign (const Ctr& op1, Ctr& result)
{
assert (op1.size() <= result.size());
typename Ctr::iterator d (result.begin());
foreach (typename Ctr::const_iterator, s, op1)
*d++ = *s;
}
/// Copies \p result.size() elements from \p op1 to \p result.
template <typename Ctr>
inline void ipassign (typename Ctr::const_iterator op1, Ctr& result)
{
foreach (typename Ctr::iterator, d, result)
*d = *op1++;
}
template <typename Ctr1, typename Ctr2, typename ConvertFunction>
inline void pconvert (const Ctr1& op1, Ctr2& op2, ConvertFunction f)
{
assert (op1.size() <= op2.size());
typename Ctr1::const_iterator i1 (op1.begin());
typename Ctr2::iterator i2 (op2.begin());
for (; i1 != op1.end(); ++i1, ++i2)
*i2 = f (*i1);
}
// Functionoids for SIMD operations, like saturation arithmetic, shifts, etc.
STD_BINARY_FUNCTOR (fpadds, T, ((b > numeric_limits<T>::max() - a) ? numeric_limits<T>::max() : a + b))
STD_BINARY_FUNCTOR (fpsubs, T, ((a < numeric_limits<T>::min() + b) ? numeric_limits<T>::min() : a - b))
STD_BINARY_FUNCTOR (fpshl, T, (a << b))
STD_BINARY_FUNCTOR (fpshr, T, (a >> b))
STD_BINARY_FUNCTOR (fpmin, T, (min (a, b)))
STD_BINARY_FUNCTOR (fpmax, T, (max (a, b)))
STD_BINARY_FUNCTOR (fpavg, T, ((a + b + 1) / 2))
STD_CONVERSION_FUNCTOR (fcast, (D(a)))
#if HAVE_MATH_H
STD_UNARY_FUNCTOR (fpreciprocal,T, (1 / a))
STD_UNARY_FUNCTOR (fpsqrt, T, (reset_mmx(), T (sqrt (a))))
STD_UNARY_FUNCTOR (fprecipsqrt, T, (reset_mmx(), 1 / T(sqrt (a))))
STD_UNARY_FUNCTOR (fsin, T, (reset_mmx(), T (sin (a))))
STD_UNARY_FUNCTOR (fcos, T, (reset_mmx(), T (cos (a))))
STD_UNARY_FUNCTOR (ftan, T, (reset_mmx(), T (tan (a))))
#if HAVE_RINTF
STD_CONVERSION_FUNCTOR (fround, (reset_mmx(), D(rintf(a))))
#else
STD_CONVERSION_FUNCTOR (fround, (reset_mmx(), D(rint(a))))
#endif
template <> inline int32_t fround<double,int32_t>::operator()(const double& a) const { reset_mmx(); return (int32_t(rint(a))); }
#endif
template <> inline float fpavg<float>::operator()(const float& a, const float& b) const { return ((a + b) / 2); }
template <> inline double fpavg<double>::operator()(const double& a, const double& b) const { return ((a + b) / 2); }
#define SIMD_PACKEDOP1(name, operation) \
template <typename Ctr> \
inline void name (Ctr& op1) \
{ \
typedef typename Ctr::value_type value_t; \
packop (op1, operation<value_t>()); \
}
#define SIMD_PACKEDOP2(name, operation) \
template <typename Ctr> \
inline void name (const Ctr& op1, Ctr& op2) \
{ \
typedef typename Ctr::value_type value_t; \
packop (op1, op2, operation<value_t>()); \
}
#define SIMD_PACKEDOP3(name, operation) \
template <typename Ctr> \
inline void name (const Ctr& op1, const Ctr& op2, Ctr& result) \
{ \
typedef typename Ctr::value_type value_t; \
packop (op1, op2, result, operation<value_t>()); \
}
#define SIMD_SINGLEOP1(name, operation) \
template <typename T> \
inline T name (T op) \
{ \
operation<T> obj; \
return (obj(op)); \
}
#define SIMD_CONVERTOP(name, operation) \
template <typename Ctr1, typename Ctr2> \
inline void name (const Ctr1& op1, Ctr2& op2) \
{ \
typedef typename Ctr1::value_type value1_t; \
typedef typename Ctr2::value_type value2_t; \
pconvert (op1, op2, operation<value1_t, value2_t>());\
}
SIMD_PACKEDOP2 (padd, plus)
SIMD_PACKEDOP2 (psub, minus)
SIMD_PACKEDOP2 (pmul, multiplies)
SIMD_PACKEDOP2 (pdiv, divides)
SIMD_PACKEDOP2 (pand, bitwise_and)
SIMD_PACKEDOP2 (por, bitwise_or)
SIMD_PACKEDOP2 (pxor, bitwise_xor)
SIMD_PACKEDOP2 (pshl, fpshl)
SIMD_PACKEDOP2 (pshr, fpshr)
SIMD_PACKEDOP2 (psubs, fpsubs)
SIMD_PACKEDOP2 (pmin, fpmin)
SIMD_PACKEDOP2 (pmax, fpmax)
SIMD_PACKEDOP2 (pavg, fpavg)
SIMD_PACKEDOP3 (padd, plus)
SIMD_PACKEDOP3 (psub, minus)
SIMD_PACKEDOP3 (pmul, multiplies)
SIMD_PACKEDOP3 (pdiv, divides)
SIMD_PACKEDOP3 (pand, bitwise_and)
SIMD_PACKEDOP3 (por, bitwise_or)
SIMD_PACKEDOP3 (pxor, bitwise_xor)
SIMD_PACKEDOP3 (pshl, fpshl)
SIMD_PACKEDOP3 (pshr, fpshr)
SIMD_PACKEDOP3 (padds, fpadds)
SIMD_PACKEDOP3 (psubs, fpsubs)
SIMD_PACKEDOP3 (pmin, fpmin)
SIMD_PACKEDOP3 (pmax, fpmax)
SIMD_PACKEDOP3 (pavg, fpavg)
#if HAVE_MATH_H
SIMD_PACKEDOP1 (precip, fpreciprocal)
SIMD_PACKEDOP1 (psqrt, fpsqrt)
SIMD_PACKEDOP1 (precipsqrt, fprecipsqrt)
SIMD_PACKEDOP1 (psin, fsin)
SIMD_PACKEDOP1 (pcos, fcos)
SIMD_PACKEDOP1 (ptan, ftan)
SIMD_SINGLEOP1 (srecip, fpreciprocal)
SIMD_SINGLEOP1 (ssqrt, fpsqrt)
SIMD_SINGLEOP1 (srecipsqrt, fprecipsqrt)
SIMD_SINGLEOP1 (ssin, fsin)
SIMD_SINGLEOP1 (scos, fcos)
SIMD_SINGLEOP1 (stan, ftan)
SIMD_CONVERTOP (pround, fround)
template <typename T> inline int32_t sround (T op) { fround<T,int32_t> obj; return (obj (op)); }
#endif
#undef SIMD_SINGLEOP1
#undef SIMD_PACKEDOP3
#undef SIMD_PACKEDOP2
#undef SIMD_PACKEDOP1
//----------------------------------------------------------------------
// Vector types to cast tuple data to
//----------------------------------------------------------------------
#if HAVE_VECTOR_EXTENSIONS && __GNUC__ >= 4
#define VECTOR_ATTRIBUTE(mode,vs) __attribute__((vector_size(vs)))
#else
#define VECTOR_ATTRIBUTE(mode,vs)
#endif
typedef uint8_t v8qi_t VECTOR_ATTRIBUTE (V8QI,8);
typedef uint16_t v4hi_t VECTOR_ATTRIBUTE (V4HI,8);
typedef uint16_t v8hi_t VECTOR_ATTRIBUTE (V8HI,16);
typedef uint32_t v2si_t VECTOR_ATTRIBUTE (V2SI,8);
typedef uint32_t v4si_t VECTOR_ATTRIBUTE (V4SI,16);
#if HAVE_INT64_T
typedef uint64_t v1di_t VECTOR_ATTRIBUTE (V1DI,8);
#endif
typedef float v2sf_t VECTOR_ATTRIBUTE (V2SF,8);
typedef float v4sf_t VECTOR_ATTRIBUTE (V4SF,16);
typedef double v2df_t VECTOR_ATTRIBUTE (V2DF,16);
#undef VECTOR_ATTRIBUTE
#define SIMDA_RI(n) "m"(oin[n])
#define SIMDA_RO(n) "m"(oout[n])
#define SIMDA_WI(n) "=m"(oin[n])
#define SIMDA_WO(n) "=m"(oout[n])
//----------------------------------------------------------------------
// Hardware accelerated specializations
//----------------------------------------------------------------------
#define SIMD_PKOP2_SPEC(n, type, optype) \
template <> \
inline void packop (const tuple<n,type>& oin, tuple<n,type>& oout, optype<type>)
#define SIMD_PASSIGN_SPEC(n, type) \
template <> \
inline void passign (const tuple<n,type>& oin, tuple<n,type>& oout)
#define SIMD_IPASSIGN_SPEC(n, type) \
template <> \
inline void ipassign (tuple<n,type>::const_iterator oin, tuple<n,type>& oout)
#define SIMD_CONVERT_SPEC(n, type1, type2, optype) \
template <> \
inline void pconvert (const tuple<n,type1>& oin, tuple<n,type2>& oout, optype<type1,type2>)
#if CPU_HAS_MMX
#define STD_MMX_ARGS : "m"(oout[0]), "m"(oin[0]) : "mm0", "st", "memory"
#define DBL_MMX_ARGS : "m"(oout[0]), "m"(oout[2]), "m"(oin[0]), "m"(oin[2]) : "mm0", "mm1", "st", "st(1)", "memory"
#define MMX_PKOP2_SPEC(n,type,optype,instruction) \
SIMD_PKOP2_SPEC(n,type,optype) \
{ asm ("movq %0, %%mm0\n\t" #instruction " %1, %%mm0\n\tmovq %%mm0, %0" : STD_MMX_ARGS); reset_mmx(); }
#define MMX_DBL_PKOP2_SPEC(n,type,optype,instruction) \
SIMD_PKOP2_SPEC(n,type,optype) \
{ asm ("movq %0, %%mm0\n\tmovq %1, %%mm1\n\t" #instruction " %2, %%mm0\n\t" #instruction " %3, %%mm1\n\tmovq %%mm0, %0\n\tmovq %%mm1, %1" : DBL_MMX_ARGS); reset_mmx(); }
#define MMX_PASSIGN_SPEC(n,type) \
SIMD_PASSIGN_SPEC(n,type) \
{ asm ("movq %1, %%mm0\n\tmovq %%mm0, %0" : STD_MMX_ARGS); reset_mmx(); }
#define MMX_DBL_PASSIGN_SPEC(n,type) \
SIMD_PASSIGN_SPEC(n,type) \
{ asm ("movq %2, %%mm0\n\tmovq %3, %%mm1\n\tmovq %%mm0, %0\n\tmovq %%mm1, %1" : DBL_MMX_ARGS); reset_mmx(); }
#define MMX_IPASSIGN_SPEC(n,type) \
SIMD_IPASSIGN_SPEC(n,type) \
{ asm ("movq %1, %%mm0\n\tmovq %%mm0, %0" : STD_MMX_ARGS); reset_mmx(); }
#define MMX_DBL_IPASSIGN_SPEC(n,type) \
SIMD_IPASSIGN_SPEC(n,type) \
{ asm ("movq %2, %%mm0\n\tmovq %3, %%mm1\n\tmovq %%mm0, %0\n\tmovq %%mm1, %1" : DBL_MMX_ARGS); reset_mmx(); }
MMX_PASSIGN_SPEC(8,uint8_t)
MMX_PKOP2_SPEC(8,uint8_t,plus,paddb)
MMX_PKOP2_SPEC(8,uint8_t,minus,psubb)
MMX_PKOP2_SPEC(8,uint8_t,bitwise_and,pand)
MMX_PKOP2_SPEC(8,uint8_t,bitwise_or,por)
MMX_PKOP2_SPEC(8,uint8_t,bitwise_xor,pxor)
MMX_PKOP2_SPEC(8,uint8_t,fpadds,paddusb)
MMX_PKOP2_SPEC(8,uint8_t,fpsubs,psubusb)
MMX_PASSIGN_SPEC(8,int8_t)
MMX_PKOP2_SPEC(8,int8_t,plus,paddb)
MMX_PKOP2_SPEC(8,int8_t,minus,psubb)
MMX_PKOP2_SPEC(8,int8_t,bitwise_and,pand)
MMX_PKOP2_SPEC(8,int8_t,bitwise_or,por)
MMX_PKOP2_SPEC(8,int8_t,bitwise_xor,pxor)
MMX_PKOP2_SPEC(8,int8_t,fpadds,paddsb)
MMX_PKOP2_SPEC(8,int8_t,fpsubs,psubsb)
MMX_PASSIGN_SPEC(4,uint16_t)
MMX_PKOP2_SPEC(4,uint16_t,plus,paddw)
MMX_PKOP2_SPEC(4,uint16_t,minus,psubw)
MMX_PKOP2_SPEC(4,uint16_t,bitwise_and,pand)
MMX_PKOP2_SPEC(4,uint16_t,bitwise_or,por)
MMX_PKOP2_SPEC(4,uint16_t,bitwise_xor,pxor)
/// \todo psllw does not work like other operations, it uses the first element for shift count.
//MMX_PKOP2_SPEC(4,uint16_t,fpshl,psllw)
//MMX_PKOP2_SPEC(4,uint16_t,fpshr,psrlw)
MMX_PKOP2_SPEC(4,uint16_t,fpadds,paddusw)
MMX_PKOP2_SPEC(4,uint16_t,fpsubs,psubusw)
MMX_PASSIGN_SPEC(4,int16_t)
MMX_PKOP2_SPEC(4,int16_t,plus,paddw)
MMX_PKOP2_SPEC(4,int16_t,minus,psubw)
MMX_PKOP2_SPEC(4,int16_t,bitwise_and,pand)
MMX_PKOP2_SPEC(4,int16_t,bitwise_or,por)
MMX_PKOP2_SPEC(4,int16_t,bitwise_xor,pxor)
//MMX_PKOP2_SPEC(4,int16_t,fpshl,psllw)
//MMX_PKOP2_SPEC(4,int16_t,fpshr,psrlw)
MMX_PKOP2_SPEC(4,int16_t,fpadds,paddsw)
MMX_PKOP2_SPEC(4,int16_t,fpsubs,psubsw)
MMX_PASSIGN_SPEC(2,uint32_t)
MMX_PKOP2_SPEC(2,uint32_t,plus,paddd)
MMX_PKOP2_SPEC(2,uint32_t,minus,psubd)
MMX_PKOP2_SPEC(2,uint32_t,bitwise_and,pand)
MMX_PKOP2_SPEC(2,uint32_t,bitwise_or,por)
MMX_PKOP2_SPEC(2,uint32_t,bitwise_xor,pxor)
//MMX_PKOP2_SPEC(2,uint32_t,fpshl,pslld)
//MMX_PKOP2_SPEC(2,uint32_t,fpshr,psrld)
MMX_PASSIGN_SPEC(2,int32_t)
MMX_PKOP2_SPEC(2,int32_t,plus,paddd)
MMX_PKOP2_SPEC(2,int32_t,minus,psubd)
MMX_PKOP2_SPEC(2,int32_t,bitwise_and,pand)
MMX_PKOP2_SPEC(2,int32_t,bitwise_or,por)
MMX_PKOP2_SPEC(2,int32_t,bitwise_xor,pxor)
//MMX_PKOP2_SPEC(2,int32_t,fpshl,pslld)
//MMX_PKOP2_SPEC(2,int32_t,fpshr,psrld)
MMX_DBL_PKOP2_SPEC(4,uint32_t,plus,paddd)
MMX_DBL_PKOP2_SPEC(4,uint32_t,minus,psubd)
MMX_DBL_PKOP2_SPEC(4,uint32_t,bitwise_and,pand)
MMX_DBL_PKOP2_SPEC(4,uint32_t,bitwise_or,por)
MMX_DBL_PKOP2_SPEC(4,uint32_t,bitwise_xor,pxor)
//MMX_DBL_PKOP2_SPEC(2,uint32_t,fpshl,pslld)
//MMX_DBL_PKOP2_SPEC(2,uint32_t,fpshr,psrld)
MMX_DBL_PKOP2_SPEC(4,int32_t,plus,paddd)
MMX_DBL_PKOP2_SPEC(4,int32_t,minus,psubd)
MMX_DBL_PKOP2_SPEC(4,int32_t,bitwise_and,pand)
MMX_DBL_PKOP2_SPEC(4,int32_t,bitwise_or,por)
MMX_DBL_PKOP2_SPEC(4,int32_t,bitwise_xor,pxor)
//MMX_DBL_PKOP2_SPEC(2,int32_t,fpshl,pslld)
//MMX_DBL_PKOP2_SPEC(2,int32_t,fpshr,psrld)
#if CPU_HAS_SSE || CPU_HAS_3DNOW
MMX_PKOP2_SPEC(8,uint8_t,fpavg,pavgb)
MMX_PKOP2_SPEC(8,int8_t,fpavg,pavgb)
MMX_PKOP2_SPEC(4,uint16_t,fpavg,pavgw)
MMX_PKOP2_SPEC(4,int16_t,fpavg,pavgw)
MMX_PKOP2_SPEC(8,uint8_t,fpmin,pminub)
MMX_PKOP2_SPEC(8,uint8_t,fpmax,pmaxub)
MMX_PKOP2_SPEC(4,int16_t,fpmax,pmaxsw)
MMX_PKOP2_SPEC(4,int16_t,fpmin,pminsw)
#endif // CPU_HAS_SSE || CPU_HAS_3DNOW
#if CPU_HAS_3DNOW
MMX_PASSIGN_SPEC(2,float)
MMX_PKOP2_SPEC(2,float,plus,pfadd)
MMX_PKOP2_SPEC(2,float,minus,pfsub)
MMX_PKOP2_SPEC(2,float,multiplies,pfmul)
MMX_PKOP2_SPEC(2,float,fpmin,pfmin)
MMX_PKOP2_SPEC(2,float,fpmax,pfmax)
#ifndef CPU_HAS_SSE
MMX_DBL_PKOP2_SPEC(4,float,plus,pfadd)
MMX_DBL_PKOP2_SPEC(4,float,minus,pfsub)
MMX_DBL_PKOP2_SPEC(4,float,multiplies,pfmul)
MMX_DBL_PKOP2_SPEC(4,float,fpmin,pfmin)
MMX_DBL_PKOP2_SPEC(4,float,fpmax,pfmax)
#endif
#endif // CPU_HAS_3DNOW
MMX_IPASSIGN_SPEC(8,uint8_t)
MMX_IPASSIGN_SPEC(4,uint16_t)
MMX_IPASSIGN_SPEC(2,uint32_t)
MMX_IPASSIGN_SPEC(2,float)
#ifndef CPU_HAS_SSE
MMX_DBL_PASSIGN_SPEC(4,float)
MMX_DBL_PASSIGN_SPEC(4,uint32_t)
MMX_DBL_PASSIGN_SPEC(4,int32_t)
MMX_DBL_IPASSIGN_SPEC(4,float)
MMX_DBL_IPASSIGN_SPEC(4,uint32_t)
MMX_DBL_IPASSIGN_SPEC(4,int32_t)
#endif
#undef MMX_IPASSIGN_SPEC
#undef MMX_PASSIGN_SPEC
#undef MMX_PKOP2_SPEC
#undef STD_MMX_ARGS
#endif // CPU_HAS_MMX
#if CPU_HAS_SSE
#define STD_SSE_ARGS : "m"(oout[0]), "m"(oin[0]) : "xmm0", "memory"
#define SSE_PKOP2_SPEC(n,type,optype,instruction) \
SIMD_PKOP2_SPEC(n,type,optype) \
{ asm ("movups %0, %%xmm0\n\tmovups %1, %%xmm1\n\t" #instruction " %%xmm1, %%xmm0\n\tmovups %%xmm0, %0" : STD_SSE_ARGS);}
#define SSE_PASSIGN_SPEC(n,type) \
SIMD_PASSIGN_SPEC(n,type) \
{ asm ("movups %1, %%xmm0\n\tmovups %%xmm0, %0" : STD_SSE_ARGS);}
#define SSE_IPASSIGN_SPEC(n,type) \
SIMD_IPASSIGN_SPEC(n,type) \
{ asm ("movups %1, %%xmm0\n\tmovups %%xmm0, %0" : STD_SSE_ARGS);}
SSE_PASSIGN_SPEC(4,float)
SSE_PASSIGN_SPEC(4,int32_t)
SSE_PASSIGN_SPEC(4,uint32_t)
SSE_PKOP2_SPEC(4,float,plus,addps)
SSE_PKOP2_SPEC(4,float,minus,subps)
SSE_PKOP2_SPEC(4,float,multiplies,mulps)
SSE_PKOP2_SPEC(4,float,divides,divps)
SSE_PKOP2_SPEC(4,float,bitwise_and,andps)
SSE_PKOP2_SPEC(4,float,bitwise_or,orps)
SSE_PKOP2_SPEC(4,float,bitwise_xor,xorps)
SSE_PKOP2_SPEC(4,float,fpmax,maxps)
SSE_PKOP2_SPEC(4,float,fpmin,minps)
SIMD_CONVERT_SPEC(4,float,int32_t,fround) {
asm ("cvtps2pi %2, %%mm0\n\t"
"cvtps2pi %3, %%mm1\n\t"
"movq %%mm0, %0\n\t"
"movq %%mm1, %1"
: DBL_MMX_ARGS);
reset_mmx();
}
SIMD_CONVERT_SPEC(4,int32_t,float,fround) {
asm ("cvtpi2ps %2, %%xmm0\n\t"
"shufps $0x4E,%%xmm0,%%xmm0\n\t"
"cvtpi2ps %1, %%xmm0\n\t"
"movups %%xmm0, %0"
:: "m"(oout[0]), "m"(oin[0]), "m"(oin[2]) : "xmm0", "memory");
}
template <> inline int32_t fround<float,int32_t>::operator()(const float& a) const {
register int32_t rv;
asm ("movss %1, %%xmm0\n\t"
"cvtss2si %%xmm0, %0"
: "=r"(rv) : "m"(a) : "xmm0" );
return (rv);
}
template <> inline uint32_t fround<float,uint32_t>::operator()(const float& a) const {
register uint32_t rv;
asm ("movss %1, %%xmm0\n\t"
"cvtss2si %%xmm0, %0"
: "=r"(rv) : "m"(a) : "xmm0" );
return (rv);
}
SSE_IPASSIGN_SPEC(4,float)
SSE_IPASSIGN_SPEC(4,int32_t)
SSE_IPASSIGN_SPEC(4,uint32_t)
#undef SSE_IPASSIGN_SPEC
#undef SSE_PASSIGN_SPEC
#undef SSE_PKOP2_SPEC
#undef STD_SSE_ARGS
#endif // CPU_HAS_SSE
#undef SIMDA_RI
#undef SIMDA_RO
#undef SIMDA_WI
#undef SIMDA_WO
#undef SIMD_PACKEDOP_SPEC
} // namespace simd
} // namespace ustl