-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtotal_variation_poisson.py
107 lines (82 loc) · 2.57 KB
/
total_variation_poisson.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
from fenics import *
from mshr import *
import numpy as np
import scipy.io as sio
from dolfin_adjoint import *
import moola
np.random.seed(1)
set_log_level(ERROR)
### first we set up the system:
R_ves = 6
p_ves = 80.
#C = 1.14e-3
center1 = [-100, -100]
center2 = [100, 100]
mesh = Mesh("Mesh.xml")
V = FunctionSpace(mesh, 'CG', 1)
W = FunctionSpace(mesh, 'DG', 0)
def boundary1(x, on_boundary):
r = np.sqrt((x[0]-center1[0])**2 + (x[1]-center1[1])**2)
b = ((r < R_ves+DOLFIN_EPS) and on_boundary)
return b
def boundary2(x, on_boundary):
r = np.sqrt((x[0]-center2[0])**2 + (x[1]-center2[1])**2)
b = ((r < R_ves+DOLFIN_EPS) and on_boundary)
return b
bc1 = DirichletBC(V, p_ves, boundary1)
bc2 = DirichletBC(V, p_ves, boundary2)
bcs = [bc1, bc2]
### Solve the noiseless system to find the true p
C = 3.54e-4
p = Function(V)
# M = Function(V)
M = Constant(C)
v = TestFunction(V)
form = (inner(nabla_grad(p), nabla_grad(v)) + M*v )*dx
solve(form==0, p, bcs)
p_solution = p.copy(deepcopy=True)
### Create noisy system
noise = 5*np.random.randn(np.size(p.vector().array()))
p_noisy = p.copy(deepcopy=True)
p_noisy.vector()[:] = p.vector().array() + noise
e1 = errornorm(p,p_noisy)
# Solve forward problem (needed for moola)
p = Function(V, name='State')
M = Function(W, name='Control')
form = (inner(nabla_grad(p), nabla_grad(v)) + M*v )*dx
solve(form==0, p, bcs)
### Set up the functional:
l = 1
eps = 1e-8
control = Control(M)
def func(p, M, l, eps):
return (0.5*inner(p_noisy-p,p_noisy-p) + l*sqrt(inner(nabla_grad(M), nabla_grad(M))+eps))*dx
J = Functional(func(p,M,l,eps))
rf = ReducedFunctional(J, control)
problem = MoolaOptimizationProblem(rf)
M_moola = moola.DolfinPrimalVector(M, inner_product="L2")
solver = moola.BFGS(problem, M_moola, options={'jtol': 0,
'rjtol': 1e-12,
'gtol': 1e-9,
'Hinit': "default",
'maxiter': 100,
'mem_lim': 10})
### Solve
sol = solver.solve()
### Check solution
M_opt = sol['control'].data
p_opt = Function(V)
form_opt = (inner(nabla_grad(p_opt), nabla_grad(v)) + M_opt*v )*dx
solve(form_opt==0, p_opt,bcs)
file1 = File("p_opt.pvd")
file1 << p_opt
e2 = errornorm(p_opt, p_solution)
print "Error in noisy signal: ", e1
print "Error in restored signal: ", e2
### Save solutions
file1 = File("p_noisy.pvd")
file1 << p_noisy
file2 = File("p_exact.pvd")
file2 << p_solution
file3 = File("p_optimal.pvd")
file3 << p_opt