-
Notifications
You must be signed in to change notification settings - Fork 28
/
Copy pathtrain_img.py
471 lines (397 loc) · 17.5 KB
/
train_img.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
'''Train CIFAR10 with PyTorch.'''
from __future__ import print_function
import argparse
import os
import sys
import time
import shutil
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torchvision import transforms
from torch.autograd import Variable
import torch.backends.cudnn as cudnn
import torchvision.datasets as datasets
from convnet_aig import *
import math
from visdom import Visdom
import numpy as np
# Training settings
parser = argparse.ArgumentParser(description='PyTorch CIFAR Example')
parser.add_argument('data', metavar='DIR',
help='path to dataset')
parser.add_argument('--batch-size', type=int, default=256, metavar='N',
help='input batch size for training (default: 256)')
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='number of epochs to train (default: 200)')
parser.add_argument('--lrdecay', default=30, type=int,
help='epochs to decay lr')
parser.add_argument('--start_epoch', type=int, default=1, metavar='N',
help='number of start epoch (default: 1)')
parser.add_argument('--lr', '--learning-rate', default=0.1, type=float,
help='initial learning rate')
parser.add_argument('--lrfact', default=1, type=float,
help='learning rate factor')
parser.add_argument('--lossfact', default=1, type=float,
help='loss factor')
parser.add_argument('--target', default=0.7, type=float, help='target rate')
parser.add_argument('--momentum', default=0.9, type=float, help='momentum')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float,
help='weight decay (default: 1e-4)')
parser.add_argument('--seed', type=int, default=1, metavar='S',
help='random seed (default: 1)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='enables CUDA training')
parser.add_argument('--log-interval', type=int, default=20, metavar='N',
help='how many batches to wait before logging training status')
parser.add_argument('--resume', default='', type=str,
help='path to latest checkpoint (default: none)')
parser.add_argument('--pretrained', default='', type=str,
help='path to pretrained checkpoint (default: none)')
parser.add_argument('--save', default='', type=str, metavar='PATH',
help='folder path to save checkpoint (default: none)')
parser.add_argument('--test', dest='test', action='store_true',
help='To only run inference on test set')
parser.add_argument('--visdom', dest='visdom', action='store_true',
help='Use visdom to track and plot')
parser.add_argument('--print-freq', '-p', default=50, type=int,
help='print frequency (default: 10)')
parser.add_argument('--expname', default='give_me_a_name', type=str, metavar='n',
help='name of experiment (default: test')
parser.set_defaults(test=False)
parser.set_defaults(visdom=False)
best_prec1 = 0
def main():
global args, best_prec1
args = parser.parse_args()
torch.manual_seed(args.seed)
torch.cuda.manual_seed(args.seed)
if args.visdom:
global plotter
plotter = VisdomLinePlotter(env_name=args.expname)
# set the target rates for each layer
# the default is to use the same target rate for each layer
target_rates_list = [args.target] * 16
target_rates = {i:target_rates_list[i] for i in range(len(target_rates_list))}
model = ResNet50_ImageNet()
# optionally initialize from pretrained
if args.pretrained:
latest_checkpoint = args.pretrained
if os.path.isfile(latest_checkpoint):
print("=> loading checkpoint '{}'".format(latest_checkpoint))
# TODO: clean this part up
checkpoint = torch.load(latest_checkpoint)
state = model.state_dict()
loaded_state_dict = checkpoint
for k in loaded_state_dict:
if k in state:
state[k] = loaded_state_dict[k]
else:
if 'fc' in k:
state[k.replace('fc', 'linear')] = loaded_state_dict[k]
if 'downsample' in k:
state[k.replace('downsample', 'shortcut')] = loaded_state_dict[k]
model.load_state_dict(state)
print("=> loaded checkpoint '{}' (epoch {})"
.format(latest_checkpoint, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(latest_checkpoint))
model = torch.nn.DataParallel(model).cuda()
# ImageNet Data loading code
traindir = os.path.join(args.data, 'train')
valdir = os.path.join(args.data, 'val')
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
train_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(
traindir,
transforms.Compose([
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=True,
num_workers=10, pin_memory=True)
val_loader = torch.utils.data.DataLoader(
datasets.ImageFolder(valdir, transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=args.batch_size, shuffle=False,
num_workers=10, pin_memory=True)
# optionally resume from a checkpoint
if args.resume:
latest_checkpoint = os.path.join(args.resume, 'checkpoint.pth.tar')
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.resume, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
cudnn.benchmark = True
# define loss function (criterion) and pptimizer
criterion = nn.CrossEntropyLoss().cuda()
optimizer = optim.SGD([{'params': [param for name, param in model.named_parameters() if 'fc' in name],
'lr': args.lrfact * args.lr, 'weight_decay': args.weight_decay},
{'params': [param for name, param in model.named_parameters() if 'fc' not in name],
'lr': args.lr, 'weight_decay': args.weight_decay}
], momentum=args.momentum)
# get the number of model parameters
print('Number of model parameters: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
if args.test:
test_acc = validate(val_loader, model, criterion, 60, target_rates)
sys.exit()
for epoch in range(args.start_epoch, args.epochs):
adjust_learning_rate(optimizer, epoch)
# train for one epoch
train(train_loader, model, criterion, optimizer, epoch, target_rates)
# evaluate on validation set
prec1 = validate(val_loader, model, criterion, epoch, target_rates)
# remember best prec@1 and save checkpoint
is_best = prec1 > best_prec1
best_prec1 = max(prec1, best_prec1)
save_checkpoint({
'epoch': epoch + 1,
'state_dict': model.state_dict(),
'best_prec1': best_prec1,
'optimizer' : optimizer.state_dict(),
}, is_best)
print('Best accuracy: ', best_prec1)
def train(train_loader, model, criterion, optimizer, epoch, target_rates):
"""Train for one epoch on the training set"""
batch_time = AverageMeter()
losses = AverageMeter()
losses_c = AverageMeter()
losses_t = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
activations = AverageMeter()
# Temperature of Gumble Softmax
# We simply keep it fixed
temp = 1
# switch to train mode
model.train()
end = time.time()
ttt = torch.FloatTensor(33).fill_(0)
ttt = ttt.cuda()
ttt = torch.autograd.Variable(ttt, requires_grad=False)
for i, (input, target) in enumerate(train_loader):
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input)
target_var = torch.autograd.Variable(target)
# compute output
output, activation_rates = model(input_var, temperature=temp)
# classification loss
loss_classify = criterion(output, target_var)
# target rate loss
acts = 0
acts_plot = 0
for j, act in enumerate(activation_rates):
if target_rates[j] < 1:
acts_plot += torch.mean(act)
acts += torch.pow(target_rates[j] - torch.mean(act), 2)
else:
acts_plot += 1
# this is important when using data DataParallel
acts_plot = torch.mean(acts_plot / len(activation_rates))
acts = torch.mean(acts / len(activation_rates))
act_loss = args.lossfact * acts
loss = loss_classify + act_loss
# Sometimes this value is nan
# If someone can find out why, please add a pull request
# For now, we skip the batch and move on
if math.isnan(acts_plot.data[0]):
print(activation_rates)
optimizer.zero_grad()
loss.backward()
continue
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
losses_c.update(loss_classify.data[0], input.size(0))
losses_t.update(act_loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
activations.update(acts_plot.data[0], 1)
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f}) c({lossc.avg:.4f}) a({lossa.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'
'Activations: {act.val:.3f} ({act.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time,
loss=losses, lossa=losses_t, lossc=losses_c, top1=top1, top5=top5, act=activations))
# log values to visdom
if args.visdom:
plotter.plot('act', 'train', epoch, activations.avg)
plotter.plot('top1', 'train', epoch, top1.avg)
plotter.plot('top5', 'train', epoch, top5.avg)
plotter.plot('loss', 'train', epoch, losses.avg)
def validate(val_loader, model, criterion, epoch, target_rates):
"""Perform validation on the validation set"""
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
top5 = AverageMeter()
accumulator = ActivationAccum_img(epoch)
activations = AverageMeter()
# Temperature of Gumble Softmax
# We simply keep it fixed
temp = 1
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target) in enumerate(val_loader):
target = target.cuda(async=True)
input = input.cuda()
input_var = torch.autograd.Variable(input, volatile=True)
target_var = torch.autograd.Variable(target, volatile=True)
# compute output
output, activation_rates = model(input_var, temperature=temp)
# classification loss
loss = criterion(output, target_var)
acts = 0
for j, act in enumerate(activation_rates):
if target_rates[j] < 1:
acts += torch.mean(act)
else:
acts += 1
# this is important when using data DataParallel
acts = torch.mean(acts / len(activation_rates))
# see above
if math.isnan(acts.data[0]):
continue
# accumulate statistics over eval set
accumulator.accumulate(activation_rates, target_var, target_rates)
# measure accuracy and record loss
prec1, prec5 = accuracy(output.data, target, topk=(1, 5))
losses.update(loss.data[0], input.size(0))
top1.update(prec1[0], input.size(0))
top5.update(prec5[0], input.size(0))
activations.update(acts.data[0], 1)
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i % args.print_freq == 0:
print('Test: [{0}/{1}]\t'
'Time {batch_time.val:.3f} ({batch_time.avg:.3f})\t'
'Loss {loss.val:.4f} ({loss.avg:.4f})\t'
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})\t'
'Prec@5 {top5.val:.3f} ({top5.avg:.3f})\t'
'Activations: {act.val:.3f} ({act.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses,
top1=top1, top5=top5, act=activations))
activ_output = accumulator.getoutput()
print('gate activation rates:')
print(activ_output[0])
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
if args.visdom:
plotter.plot('act', 'test', epoch, activations.avg)
plotter.plot('top1', 'test', epoch, top1.avg)
plotter.plot('top5', 'test', epoch, top5.avg)
plotter.plot('loss', 'test', epoch, losses.avg)
for gate in activ_output[0]:
plotter.plot('gates', '{}'.format(gate), epoch, activ_output[0][gate])
# Plot more detailed stats like activation heatmaps for key epochs
if epoch in [30, 60, 99]:
for category in activ_output[1]:
plotter.plot('classes', '{}'.format(category), epoch, activ_output[1][category])
heatmap = activ_output[2]
means = np.mean(heatmap, axis=0)
stds = np.std(heatmap, axis=0)
normalized_stds = np.array(stds / (means + 1e-10)).squeeze()
plotter.plot_heatmap(activ_output[2], epoch)
for counter in range(len(normalized_stds)):
plotter.plot('activations{}'.format(epoch), 'activations', counter, normalized_stds[counter])
for counter in range(len(means)):
plotter.plot('opening_rate{}'.format(epoch), 'opening_rate', counter, means[counter])
return top1.avg
def save_checkpoint(state, is_best, filename='checkpoint.pth.tar'):
directory = "runs/%s/"%(args.expname)
if not os.path.exists(directory):
os.makedirs(directory)
filename = directory + filename
torch.save(state, filename)
if is_best:
shutil.copyfile(filename, 'runs/%s/'%(args.expname) + 'model_best.pth.tar')
class VisdomLinePlotter(object):
"""Plots to Visdom"""
def __init__(self, env_name='main'):
self.viz = Visdom()
self.env = env_name
self.plots = {}
def plot(self, var_name, split_name, x, y, env=None):
if env is not None:
print_env = env
else:
print_env = self.env
if var_name not in self.plots:
self.plots[var_name] = self.viz.line(X=np.array([x,x]), Y=np.array([y,y]), env=print_env, opts=dict(
legend=[split_name],
title=var_name,
xlabel='Epochs',
ylabel=var_name
))
else:
self.viz.updateTrace(X=np.array([x]), Y=np.array([y]), env=print_env, win=self.plots[var_name], name=split_name)
def plot_heatmap(self, map, epoch):
self.viz.heatmap(X=map,
env=self.env,
opts=dict(title='activations {}'.format(epoch),
xlabel='modules',
ylabel='classes'
))
class AverageMeter(object):
"""Computes and stores the average and current value"""
def __init__(self):
self.reset()
def reset(self):
self.val = 0
self.avg = 0
self.sum = 0
self.count = 0
def update(self, val, n=1):
self.val = val
self.sum += val * n
self.count += n
self.avg = self.sum / self.count
def adjust_learning_rate(optimizer, epoch):
"""Sets the learning rate to the initial LR decayed by 10 after 150 and 225 epochs"""
lr = args.lr * (0.1 ** (epoch // args.lrdecay))
factor = args.lrfact
if args.visdom:
plotter.plot('learning_rate', 'train', epoch, lr)
optimizer.param_groups[0]['lr'] = factor * lr
optimizer.param_groups[1]['lr'] = lr
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0)
res.append(correct_k.mul_(100.0 / batch_size))
return res
if __name__ == '__main__':
main()