-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
100 lines (83 loc) · 3.81 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import math
import os
from argparse import ArgumentParser
import numpy as np
import torch
from pytorch_lightning import Trainer
from pytorch_lightning import seed_everything
from pytorch_lightning.plugins import DeepSpeedPlugin
from pytorch_lightning.utilities import rank_zero_info
from pytorch_lightning.callbacks import ModelCheckpoint
from torch.utils.data import Dataset, DataLoader
from mingpt.callback import CUDACallback
from mingpt.lr_decay import LearningRateDecayCallback
from mingpt.model import GPT
class CharDataset(Dataset):
def __init__(self, data, block_size):
chars = list(set(data))
data_size, vocab_size = len(data), len(chars)
rank_zero_info('data has %d characters, %d unique.' % (data_size, vocab_size))
self.stoi = {ch: i for i, ch in enumerate(chars)}
self.itos = {i: ch for i, ch in enumerate(chars)}
self.block_size = block_size
self.vocab_size = vocab_size
self.data = data
def __len__(self):
return math.ceil(len(self.data) / (self.block_size + 1))
def __getitem__(self, idx):
# we're actually going to "cheat" and pick a spot in the dataset at random
i = np.random.randint(0, len(self.data) - (self.block_size + 1))
chunk = self.data[i:i + self.block_size + 1]
dix = [self.stoi[s] for s in chunk]
x = torch.tensor(dix[:-1], dtype=torch.long)
y = torch.tensor(dix[1:], dtype=torch.long)
return x, y
if __name__ == '__main__':
seed_everything(42)
parser = ArgumentParser()
parser = Trainer.add_argparse_args(parser)
parser.add_argument('--n_layer', default=22, type=int)
parser.add_argument('--n_head', default=16, type=int)
parser.add_argument('--n_embd', default=3072, type=int)
parser.add_argument('--learning_rate', default=6e-4, type=float)
parser.add_argument('--block_size', default=128, type=int)
parser.add_argument('--batch_size', default=1, type=int)
parser.add_argument('--num_workers', default=0, type=int)
parser.add_argument('--checkpoint', default="./checkpoints", type=str)
parser.add_argument('--save_top_k', default=1, type=int)
args = parser.parse_known_args()[0]
if not os.path.exists("input.txt"):
os.system("wget https://raw.githubusercontent.com/karpathy/char-rnn/master/data/tinyshakespeare/input.txt")
# you can download this file at https://github.com/karpathy/char-rnn/blob/master/data/tinyshakespeare/input.txt
text = open('input.txt', 'r').read() # don't worry we won't run out of file handles
train_dataset = CharDataset(text, args.block_size) # one line of poem is roughly 50 characters
train_loader = DataLoader(train_dataset, batch_size=args.batch_size, num_workers=args.num_workers)
model = GPT(
vocab_size=train_dataset.vocab_size,
block_size=train_dataset.block_size,
n_layer=args.n_layer,
n_head=args.n_head,
n_embd=args.n_embd,
learning_rate=args.learning_rate
)
# save top N models by train_loss, as well as the final epoch model saved to "last.ckpt"
# TODO: Save val_loss instead
checkpoint_callback = ModelCheckpoint(
dirpath=args.checkpoint,
filename="{epoch}",
monitor='train_loss',
save_last=True,
save_top_k=args.save_top_k)
lr_decay = LearningRateDecayCallback(
learning_rate=6e-4,
warmup_tokens=512 * 20,
final_tokens=2 * len(train_dataset) * args.block_size
)
trainer = Trainer.from_argparse_args(
args,
max_epochs=args.max_epochs if args.max_epochs is not None else 10,
gradient_clip_val=1.0,
callbacks=[lr_decay, CUDACallback(), checkpoint_callback],
)
trainer.fit(model, train_dataloaders=train_loader, val_dataloaders=train_loader)
#train_dataloaders=train_loader, val_dataloaders=val_loader)