forked from thearn/webcam-pulse-detector
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprocessors.py
190 lines (149 loc) · 8.65 KB
/
processors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from openmdao.lib.datatypes.api import Float, Dict, Array, List, Int
from openmdao.main.api import Component, Assembly
from imageProcess import RGBSplit, RGBmuxer, equalizeContrast, Grayscale, showBPMtext
from detectors import faceDetector
from sliceops import frameSlices, VariableEqualizerBlock, drawRectangles
from signalProcess import BufferFFT, Cardiac, PhaseController
from numpy import mean
import time, cv2
class findFaceGetPulse(Assembly):
"""
An openMDAO assembly to detect a human face in an image frame, and then
isolate the forehead.
Collects and buffers mean value of the green channel in the forehead locations
over time, with each run.
This information is then used to estimate the detected individual's heartbeat
Basic usage:
-Instance this assembly, then create a loop over frames collected
from an imaging device.
-For each iteration of the loop, populate the assembly's
'frame_in' input array with the collected frame, then call the assembly's run()
method to conduct all of the analysis.
-Finally, display annotated results
from the output 'frame_out' array.
"""
def __init__(self,
bpm_limits = [50,160],
data_spike_limit = 13.,
face_detector_smoothness = 10):
super(findFaceGetPulse, self).__init__()
#-----------assembly-level I/O-----------
#input array
self.add("frame_in", Array(iotype="in"))
#output array
self.add("frame_out", Array(iotype="out"))
#array of detected faces (as single frame)
self.add("faces", Array(iotype="out"))
#-----------components-----------
# Each component we want to use must be added to the assembly, then also
# added to the driver's workflow
#splits input color image into R,G,B channels
self.add("RGBsplitter", RGBSplit())
self.driver.workflow.add("RGBsplitter")
#converts input color image to grayscale
self.add("grayscale", Grayscale())
self.driver.workflow.add("grayscale")
#equalizes contast on the grayscale'd input image
self.add("contrast_eq", equalizeContrast())
self.driver.workflow.add("contrast_eq")
#finds faces within the grayscale's and contast-adjusted input image
#Sets smoothness parameter to help prevent 'jitteriness' in the face tracking
self.add("find_faces", faceDetector(smooth = face_detector_smoothness))
self.driver.workflow.add("find_faces")
#collects subimage samples of the detected faces
self.add("grab_faces", frameSlices())
self.driver.workflow.add("grab_faces")
#collects subimage samples of the detected foreheads
self.add("grab_foreheads", frameSlices())
self.driver.workflow.add("grab_foreheads")
#highlights the locations of detected faces using contrast equalization
self.add("highlight_faces", VariableEqualizerBlock(channels=[0,1,2]))
self.driver.workflow.add("highlight_faces")
#highlights the locations of detected foreheads using
#contrast equalization (green channel only)
self.add("highlight_fhd", VariableEqualizerBlock(channels=[1],
zerochannels=[0,2]))
self.driver.workflow.add("highlight_fhd")
#collects data over time to compute a 1d temporal FFT
# 'n' sets the internal buffer length (number of samples)
# 'spike_limit' limits the size of acceptable spikes in the raw measured
# data. When exceeeded due to poor data, the fft component's buffers
# are reset
self.add("fft", BufferFFT(n=425,
spike_limit = data_spike_limit))
self.driver.workflow.add("fft")
#takes in a computed FFT and estimates cardiac data
# 'bpm_limits' sets the lower and upper limits (in bpm) for heartbeat
# detection. 50 to 160 bpm is a pretty fair range here.
self.add("measure_heart", Cardiac(bpm_limits = bpm_limits))
self.driver.workflow.add("measure_heart")
#toggles flashing of the detected foreheads in sync with the detected
#heartbeat. the 'default_a' and 'default_b' set the nominal contrast
#correction that will occur when phase pulsing isn't enabled.
#Pulsing is set by toggling the boolean variable 'state'.
self.add("bpm_flasher", PhaseController(default_a=1.,
default_b=0.,
state = True))
self.driver.workflow.add("bpm_flasher")
self.add("show_bpm_text", showBPMtext())
self.driver.workflow.add("show_bpm_text")
#-----------connections-----------
# here is where we establish the relationships between the components
# that were added above.
#--First, set up the connectivity for components that will do basic
#--input, decomposition, and annotation of the inputted image frame
# pass image frames from the assembly-level input arrays to the RGB
# splitter & grayscale converters (separately)
self.connect("frame_in", "RGBsplitter.frame_in")
self.connect("frame_in", "grayscale.frame_in")
#pass grayscaled image to the contrast equalizer
self.connect("grayscale.frame_out", "contrast_eq.frame_in")
#pass the contrast adjusted grayscale image to the face detector
self.connect("contrast_eq.frame_out", "find_faces.frame_in")
# now pass our original image frame and the detected faces locations
# to the face highlighter
self.connect("frame_in", "highlight_faces.frame_in")
self.connect("find_faces.detected", "highlight_faces.rects_in")
# pass the original image frame and detected face locations
# to the forehead highlighter
self.connect("highlight_faces.frame_out", "highlight_fhd.frame_in")
self.connect("find_faces.foreheads", "highlight_fhd.rects_in")
# pass the original image frame and detected face locations
# to the face subimage collector
self.connect("find_faces.detected", "grab_faces.rects_in")
self.connect("contrast_eq.frame_out", "grab_faces.frame_in")
# --Now we set the connectivity for the components that will do the
# --actual analysis
#pass the green channel of the original image frame and detected
#face locations to the forehead subimage collector
self.connect("find_faces.foreheads", "grab_foreheads.rects_in")
self.connect("RGBsplitter.G", "grab_foreheads.frame_in")
#send the mean of the first detected forehead subimage (green channel)
#to the buffering FFT component
#Should probably be an intermediate component here, but that isn't
#actually necessary - we can do a connection between expressions in
#addition to input/output variables.
#self.connect("grab_foreheads.slices[0]", "fft.data_in")
self.connect("grab_foreheads.zero_mean", "fft.data_in")
#Send the FFT outputs (the fft & associated freqs in hz) to the cardiac
#data estimator
self.connect("fft.fft", "measure_heart.fft_in")
self.connect("fft.freqs", "measure_heart.freqs_in")
#connect the estimated heartbeat phase to the forehead flashing controller
self.connect("measure_heart.phase", "bpm_flasher.phase")
self.connect("fft.ready", "bpm_flasher.state")
#connect the flash controller to the forehead highlighter
self.connect("bpm_flasher.alpha", "highlight_fhd.alpha")
self.connect("bpm_flasher.beta", "highlight_fhd.beta")
#connect collection of all detected faces up to assembly level for output
self.connect("grab_faces.combined", "faces")
# text display of estimated bpm
self.connect("highlight_fhd.frame_out", "show_bpm_text.frame_in")
self.connect("measure_heart.bpm", "show_bpm_text.bpm")
self.connect("find_faces.detected[0][0]", "show_bpm_text.x")
self.connect("find_faces.detected[0][1]", "show_bpm_text.y")
self.connect("fft.fps", "show_bpm_text.fps")
self.connect("fft.size", "show_bpm_text.size")
self.connect("fft.n", "show_bpm_text.n")
self.connect("fft.ready", "show_bpm_text.ready")
self.connect("show_bpm_text.frame_out", "frame_out")