-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathapp.py
1534 lines (1382 loc) · 79.4 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import json
import os
import wikipedia
import requests
import gpt3_tokenizer
import gradio as gr
import openai
import google.auth
from google.oauth2 import service_account
from langchain.chat_models import ChatOpenAI
from langchain.chat_models import AzureChatOpenAI
from langchain.chat_models import ChatVertexAI
from langchain.retrievers import WikipediaRetriever
from langchain.prompts.chat import (
ChatPromptTemplate,
SystemMessagePromptTemplate,
HumanMessagePromptTemplate,
)
from langchain.schema import HumanMessage, SystemMessage
from ExamplesUtil.PromptGenerator import *
from MongoUtil.StateDataClient import *
from MongoUtil.CelebDataClient import *
from UIHandlers.AskMeUI import AskMeUI
from UIHandlers.Test import Test
from UIHandlers.KnowledgeBase import KnowledgeBase
from AssemblyAIUtil.AssemblyAITranscriber import AssemblyAITranscriber
from OpenAIUtil.TranscribeOperations import TranscribeOperations
from ElevenlabsUtil.ElevenlabsVoiceGenerator import ElevenlabsVoiceGenerator
from Utils.PromptOptimizer import PromptOptimizer
from Utils.StabilityAPI import StabilityAPI
from Utils.AskPicturizeIt import *
from Utils.LinkedInImageGenerator import LinkedInImageGenerator
from Utils.OpenJourneyImageGenerator import OpenJourneyImageGenerator
from Utils.RunwaymlImageGenerator import RunwaymlImageGenerator
from Utils.CompVisImageGenerator import CompVisImageGenerator
from Utils.TranscribeSpeechbrain import TranscribeSpeechbrain
#from dotenv import load_dotenv
#load_dotenv()
prompt_optimizer = PromptOptimizer()
prompt_generator = PromptGenerator()
test = Test()
kb = KnowledgeBase()
def diffusion_models_handler(model_selection : str, prompt :str, stability_api_key: str,
openai_api_key: str, openai_org_id: str,
optionSelection: str, azure_openai_key: str,
azure_openai_api_base: str, azure_openai_deployment_name: str,
input_imagesize: str, input_num_images: int):
if model_selection not in AskPicturizeIt.diffusion_models:
raise ValueError("Invalid choice!")
try:
match model_selection:
case "prompthero/linkedin-diffusion":
image_generator = LinkedInImageGenerator()
image_result = image_generator.generate_image(prompt)
return f"Image generated from {model_selection}", image_result
case "prompthero/openjourney":
image_generator = OpenJourneyImageGenerator()
image_result = image_generator.generate_image(prompt)
return f"Image generated from {model_selection}", image_result
case "runwayml/stable-diffusion-v1-5":
image_generator = RunwaymlImageGenerator()
image_result = image_generator.generate_image(prompt)
return f"Image generated from {model_selection}", image_result
case "CompVis/stable-diffusion-v1-4":
image_generator = CompVisImageGenerator()
image_result = image_generator.generate_image(prompt)
return f"Image generated from {model_selection}", image_result
case "stability.ai":
stability_api = StabilityAPI(stability_api_key)
output_generated_image = stability_api.text_to_image(text_prompts = [prompt])
return "Image generated using stability AI ", output_generated_image
case "dall-e":
uihandlers = get_AskMeUI(openai_api_key, openai_org_id, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name)
return uihandlers.create_image_from_prompt_handler(prompt, input_imagesize, input_num_images)
except Exception as exception:
print(f"Exception Name: {type(exception).__name__}")
print(exception)
return f" {model_selection} image_generator Error - {exception}", None
def tokenizer_calc(prompt :str):
if prompt:
return f"Tokenizer (tokens/characters) {gpt3_tokenizer.count_tokens(prompt)}, {len(prompt)}"
'''
Record voice, transcribe, picturize, create variations, and upload
'''
def transcribe_handler(api_key :str, org_id :str, audio_file :str):
if audio_file:
uihandlers = AskMeUI()
uihandlers.set_openai_config(api_key)
if org_id:
set_org_id(org_id)
return uihandlers.transcribe_handler(audio_file)
def transcribe_whisper_large_v2(audio_file :str):
if audio_file:
transcribeOperations = TranscribeOperations()
return transcribeOperations.transcribe_whisper_large_v2(audio_file)
def try_transcribe(model_selection, audio_file :str, language :str ="en", assemblyai_api_key :str = None, openai_api_key :str = None, org_id :str = None):
if model_selection not in AskPicturizeIt.audio_models:
raise ValueError("Invalid choice!")
if audio_file:
if language in ["en","hi","fr","es"]:
match language:
case "hi": # Hindi
match model_selection:
case "speechbrain/speechbrain":
transcribeOperations = TranscribeSpeechbrain()
text, message = transcribeOperations.transcribe(audio_file)
return message, text
case "openai/whisper-1":
uihandlers = AskMeUI()
uihandlers.set_openai_config(openai_api_key)
if org_id:
uihandlers.set_org_id(org_id)
text, message = uihandlers.transcribe_handler(audio_file, language)
return message, text
case other:
return f"{model_selection} and {language} combination is not supported!", ""
case "fr": # French
match model_selection:
case "openai/whisper-1":
uihandlers = AskMeUI()
uihandlers.set_openai_config(openai_api_key)
if org_id:
uihandlers.set_org_id(org_id)
text, message = uihandlers.transcribe_handler(audio_file, language)
return message, text
case other:
return f"{model_selection} and {language} combination is not supported!", ""
case "es": # Spanish
match model_selection:
case "openai/whisper-1":
uihandlers = AskMeUI()
uihandlers.set_openai_config(openai_api_key)
if org_id:
uihandlers.set_org_id(org_id)
text, message = uihandlers.transcribe_handler(audio_file, language)
return message, text
case other:
return f"{model_selection} and {language} combination is not supported!", ""
case "en":
match model_selection:
case "assemblyai/assemblyai":
if not assemblyai_api_key:
return AskPicturizeIt.NO_ASSEMBLYAI_API_KEY_ERROR, ""
transcriber = AssemblyAITranscriber(assemblyai_api_key)
text = transcriber.transcribe(audio_file)
return text, text
case "openai/whisper-1":
uihandlers = AskMeUI()
uihandlers.set_openai_config(openai_api_key)
if org_id:
uihandlers.set_org_id(org_id)
text, message = uihandlers.transcribe_handler(audio_file, language)
return message, text
case other:
return f"{model_selection} and {language} combination is not supported!", ""
case other:
return f"{model_selection} and {language} combination is not supported!", ""
else:
return "", "No supported voice language!"
def get_AskMeUI(api_key :str, org_id :str, optionSelection :str, azure_openai_key :str, azure_openai_api_base :str, azure_openai_deployment_name :str):
if optionSelection not in AskPicturizeIt.llm_api_options:
raise ValueError("Invalid choice!")
uihandlers = AskMeUI()
match optionSelection:
case "OpenAI API":
uihandlers.set_openai_config(api_key)
if org_id:
uihandlers.set_org_id(org_id)
return uihandlers
case "Azure OpenAI API":
uihandlers.set_azure_openai_config(azure_openai_key, azure_openai_api_base, azure_openai_deployment_name)
return uihandlers
case "Google PaLM API":
return uihandlers
def get_private_mongo_config():
return os.getenv("P_MONGODB_URI"), os.getenv("P_MONGODB_DATABASE")
def get_key_traits(name):
connection_string, database = get_private_mongo_config()
celeb_data_client = CelebDataClient(connection_string, database)
return celeb_data_client.get_key_traits(name)
'''
Image generation
'''
def create_image_from_prompt_handler(api_key :str, org_id :str, optionSelection :str, azure_openai_key :str, azure_openai_api_base :str, azure_openai_deployment_name :str, input_prompt :str, input_imagesize :str, input_num_images :int):
if api_key or azure_openai_key:
uihandlers = get_AskMeUI(api_key, org_id, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name)
return uihandlers.create_image_from_prompt_handler(input_prompt, input_imagesize, input_num_images)
else:
return AskPicturizeIt.NO_API_KEY_ERROR, None, None
'''
Image variations
'''
def create_variation_from_image_handler(api_key, org_id, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name, input_image_variation, input_imagesize, input_num_images):
if api_key or azure_openai_key:
uihandlers = get_AskMeUI(api_key, org_id, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name)
return uihandlers.create_variation_from_image_handler(input_image_variation, input_imagesize, input_num_images)
else:
return AskPicturizeIt.NO_API_KEY_ERROR, None, None
'''
Know your Celebrity
'''
def describe_handler(api_key, org_id, model_name, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name, cloudinary_cloud_name, cloudinary_api_key, cloudinary_api_secret, cloudinary_folder, mongo_config, mongo_connection_string, mongo_database, celebs_name_label, question_prompt, know_your_celeb_description, input_celeb_real_picture, input_celeb_generated_picture):
uihandlers = get_AskMeUI(api_key, org_id, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name)
uihandlers.set_model_name(model_name)
uihandlers.set_mongodb_config(mongo_config, mongo_connection_string, mongo_database)
uihandlers.set_cloudinary_config(cloudinary_cloud_name, cloudinary_api_key, cloudinary_api_secret)
return uihandlers.describe_handler(celebs_name_label, question_prompt, cloudinary_folder, know_your_celeb_description, input_celeb_real_picture, input_celeb_generated_picture)
def celeb_upload_save_real_generated_image_handler(cloudinary_cloud_name, cloudinary_api_key, cloudinary_api_secret, cloudinary_folder, mongo_config, mongo_connection_string, mongo_database, celebs_name_label, question_prompt, know_your_celeb_description, celeb_real_photo, celeb_generated_image):
uihandlers = AskMeUI()
uihandlers.set_mongodb_config(mongo_config, mongo_connection_string, mongo_database)
uihandlers.set_cloudinary_config(cloudinary_cloud_name, cloudinary_api_key, cloudinary_api_secret)
return uihandlers.celeb_upload_save_real_generated_image(celebs_name_label, question_prompt, know_your_celeb_description, cloudinary_folder, celeb_real_photo, celeb_generated_image)
def get_celebs_response_change_handler(mongo_config, mongo_connection_string, mongo_database, celebrity, image_prompt_text, key_traits):
return get_celebs_response(mongo_config, mongo_connection_string, mongo_database, celebrity, image_prompt_text, key_traits)
def get_celebs_response(mongo_config, mongo_connection_string, mongo_database, celebrity, image_prompt_text, key_traits):
uihandlers = AskMeUI()
uihandlers.set_mongodb_config(mongo_config, mongo_connection_string, mongo_database)
response = None
key_traits = get_key_traits(celebrity)
try:
name, prompt, response, wiki_image, generated_image_url = uihandlers.get_celebs_response_handler(celebrity)
except:
name = celebrity
prompt = celebrity
generated_image_url = None
wiki_image = None
retriever = WikipediaRetriever(load_all_available_meta=True)
docs = retriever.get_relevant_documents(query=celebrity)
wiki_summary = docs[0].metadata["summary"]
#wiki_image = docs[0].metadata["image_urls"][0]
return name, prompt, wiki_summary, response, wiki_image, generated_image_url, f"{name}", key_traits
def celeb_summarize_handler(api_key, org_id, prompt):
uihandlers = AskMeUI()
uihandlers.set_openai_config(api_key)
if org_id:
uihandlers.set_org_id(org_id)
return uihandlers.ask_chatgpt_summarize(prompt)
def celeb_save_description_handler(mongo_config, mongo_connection_string, mongo_database, name, prompt, description):
uihandlers = AskMeUI()
if name and know_your_celeb_description:
uihandlers.set_mongodb_config(mongo_config, mongo_connection_string, mongo_database)
uihandlers.update_description(name, prompt, description)
return f"ChatGPT description saved for {name}", description
def celebs_name_search_handler(api_key, org_id, model_name, optionSelection,
azure_openai_key, azure_openai_api_base, azure_openai_deployment_name,
google_generative_api_key, google_project_id, google_model_name, search_text, celebs_chat_history,
input_language, output_language,
location="us-east1"):
if optionSelection not in AskPicturizeIt.llm_api_options:
raise ValueError("Invalid choice!")
if not api_key or len(api_key.strip())==0:
return search_text, celebs_chat_history, AskPicturizeIt.NO_API_KEY_ERROR
elif len(search_text.strip())<=0:
return None, celebs_chat_history, "Error: No Input"
celebs_chat_history = celebs_chat_history + [(search_text, None)]
try:
chat = None
match optionSelection:
case "OpenAI API":
chat = ChatOpenAI(
openai_api_key=api_key,
model=model_name,
temperature=0.7)
case "Azure OpenAI API":
chat = AzureChatOpenAI(
openai_api_type="azure",
openai_api_key=azure_openai_key,
openai_api_base=azure_openai_api_base,
deployment_name=azure_openai_deployment_name,
model=model_name,
temperature=0.7,
openai_api_version="2023-05-15")
case "Google PaLM API":
#TO DO AUTH
#service_account_info = os.getenv["GOOGLE_APPLICATION_CREDENTIALS"]
# or,
#with open('service_service.json') as source:
# service_account_info = json.load(source)
#credentials = service_account.Credentials.from_service_account_info(service_account_info, scopes="googleapis.com")
#project_id and location
# load_credentials_from_dict with service account info
'''
chat = ChatVertexAI(
project_id=google_project_id,
model_name=google_model_name,
max_output_tokens=256,
temperature=0.7,
top_p=0.8,
top_k=40,
verbose=True)
'''
return None, celebs_chat_history, f"Error: The LLM provider {optionSelection} is not yet supported."
except Exception as exception:
errorMessage = f"Error: For {optionSelection} - Exception Name: {type(exception).__name__} - {exception}"
print(errorMessage)
return None, celebs_chat_history, errorMessage
try:
if input_language in output_language:
template = (
"You are a helpful assistant that answers this question."
)
else:
template = (
"You are a helpful assistant that answers this question in {input_language} and translate to [output_language]."
)
system_message_prompt = SystemMessagePromptTemplate.from_template(template)
human_template = "{text}"
human_message_prompt = HumanMessagePromptTemplate.from_template(human_template)
chat_prompt = ChatPromptTemplate.from_messages([system_message_prompt, human_message_prompt])
if input_language in output_language:
llm_response = chat(
chat_prompt.format_prompt(
text=search_text
).to_messages()
)
else:
llm_response = chat(
chat_prompt.format_prompt(
input_language=input_language,
output_language=output_language,
text=search_text
).to_messages()
)
return llm_response.content, celebs_chat_history, "In progress"
except Exception as exception:
errorMessage = f"Error: Formating prompt and LLMing for {optionSelection} - Exception Name: {type(exception).__name__} - {exception}"
print(errorMessage)
return None, celebs_chat_history, errorMessage
def celebs_name_search_history_handler(search_text, celebs_chat_history, celebs_name_search_label):
default_celeb_name = "John Doe"
try:
if "Error" in celebs_name_search_label["label"]:
return None, default_celeb_name, celebs_chat_history, celebs_name_search_label["label"]
if search_text is not None:
celebrity_name=search_text.replace(".", "").strip()
if len(celebrity_name)>0:
celebs_chat_history[-1][1] = celebrity_name
return None, celebrity_name, celebs_chat_history, f"Review Celebrity tab for {celebrity_name} details, else rewrite your question to get a right answer."
else:
return None, default_celeb_name, celebs_chat_history, "Error 1: Input error!"
else:
return None, default_celeb_name, celebs_chat_history, "Error 2: Input error!"
except Exception as exception:
errorMessage = f"celebs_name_search_history_handler -> Exception Name: {type(exception).__name__} - {exception} "
print(errorMessage)
return None, default_celeb_name, celebs_chat_history, errorMessage
'''
Codex
'''
def ask_chatgpt_handler(api_key, org_id, model_name, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name, mongo_config, mongo_connection_string, mongo_database, prompt, keyword):
uihandlers = get_AskMeUI(api_key, org_id, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name)
uihandlers.set_model_name(model_name)
uihandlers.set_mongodb_config(mongo_config, mongo_connection_string, mongo_database)
return uihandlers.ask_chatgpt(prompt, keyword,"codex")
'''
Awesome ChatGPT Prompts
'''
def awesome_prompts_handler(api_key, org_id, model_name, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name, mongo_config, mongo_connection_string, mongo_database, prompt, keyword):
uihandlers = get_AskMeUI(api_key, org_id, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name)
uihandlers.set_model_name(model_name)
uihandlers.set_mongodb_config(mongo_config, mongo_connection_string, mongo_database)
return uihandlers.ask_chatgpt(prompt, keyword,"awesome-prompts")
'''
Product Definition
'''
def ask_product_def_handler(api_key, org_id, model_name, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name, mongo_config, mongo_connection_string, mongo_database, prompt, keyword):
uihandlers = get_AskMeUI(api_key, org_id, optionSelection, azure_openai_key, azure_openai_api_base, azure_openai_deployment_name)
uihandlers.set_model_name(model_name)
return uihandlers.ask_chatgpt(prompt, keyword,"product")
def update_final_prompt(product_fact_sheet, product_def_question, product_task_explanation):
final_prompt = ""
if product_fact_sheet:
final_prompt = f"{product_task_explanation}. {product_def_question}\n\n\nTechnical specifications: \n\n\n{product_fact_sheet}"
else:
final_prompt = f"{product_task_explanation}. {product_def_question}"
final_prompt = final_prompt.replace('\n\n','\n')
return final_prompt
'''
Output and Upload
'''
def cloudinary_search(cloudinary_cloud_name, cloudinary_api_key, cloudinary_api_secret, folder_name):
uihandlers = AskMeUI()
uihandlers.set_cloudinary_config(cloudinary_cloud_name, cloudinary_api_key, cloudinary_api_secret)
return uihandlers.cloudinary_search(folder_name)
def cloudinary_upload(cloudinary_cloud_name, cloudinary_api_key, cloudinary_api_secret, folder_name, input_celeb_picture, celebrity_name):
uihandlers = AskMeUI()
uihandlers.set_cloudinary_config(cloudinary_cloud_name, cloudinary_api_key, cloudinary_api_secret)
return uihandlers.cloudinary_upload(folder_name, input_celeb_picture, celebrity_name)
'''
Image generation
'''
def text2image_stability_ai_handler(api_key, prompt):
try:
stability_api = StabilityAPI(api_key)
output_generated_image = stability_api.text_to_image(text_prompts = [prompt])
return "Image generated using stability AI ", output_generated_image
except Exception as err:
return f"{err}", None
def image2image_stability_ai_handler(api_key, init_image, prompt = None):
try:
stability_api = StabilityAPI(api_key)
output_generated_image = stability_api.image_to_image(
init_image = init_image,
text_prompts = prompt,
)
return "Image variation generated using stability AI ", output_generated_image
except Exception as err:
return f"{err}", None
def stability_ai_handler(api_key, prompt = None, init_image = None):
if api_key:
if init_image:
return image2image_stability_ai_handler(api_key, init_image, prompt)
else:
return text2image_stability_ai_handler(api_key, prompt)
else:
return AskPicturizeIt.NO_STABILITYAI_API_KEY_ERROR , None
def generate_image_diffusion_handler(generate_image_prompt_text):
uihandlers = AskMeUI()
if generate_image_prompt_text and len(generate_image_prompt_text)>0:
return uihandlers.generate_image_diffusion_handler("ai-generated-image", generate_image_prompt_text)
else:
return AskPicturizeIt.ENTER_A_PROMPT_IMAGE, None
# Examples fn
def get_celeb_examples(category):
connection_string, database = get_private_mongo_config()
celeb_data_client = CelebDataClient(connection_string, database)
celeb_list = celeb_data_client.celeb_list(category)
return celeb_list
def get_saved_prompts(keyword):
try:
connection_string, database = get_private_mongo_config()
state_data_client = StateDataClient(connection_string, database)
prompt, response = state_data_client.read_description_from_prompt(keyword)
except:
prompt = ""
response = ""
pass
finally:
return prompt, response
def get_keyword_prompts(prompttype):
connection_string, database = get_private_mongo_config()
state_data_client = StateDataClient(connection_string, database)
saved_prompts = state_data_client.list_saved_prompts(prompttype)
return saved_prompts
def get_input_examples():
return prompt_generator.get_input_examples()
def get_images_examples():
images = []
for imagefile in prompt_generator.get_images_examples():
images.append(imagefile["file_path"])
return images
keyword_examples = AskPicturizeIt.KEYWORD_EXAMPLES
audio_examples = prompt_generator.get_audio_examples()
hindi_audio_examples = prompt_generator.get_audio_examples(lang = "hindi")
images_examples = get_images_examples()
input_examples = prompt_generator.get_input_examples()
product_def_keyword_examples = get_keyword_prompts("product")
recent_awesome_chatgpt_prompts = get_keyword_prompts("awesome-prompts")
saved_prompts = get_keyword_prompts("codex")
saved_products = prompt_generator.get_all_awesome_chatgpt_prompts("product")
awesome_chatgpt_prompts = prompt_generator.get_all_awesome_chatgpt_prompts()
IndianFilm_celeb_list = get_celeb_examples("Indian Film")
Hollywood_celeb_list = get_celeb_examples("Hollywood")
Business_celeb_list = get_celeb_examples("Business")
IndianFilm_celeb_examples = [celeb[0] for celeb in IndianFilm_celeb_list]
hollywood_celeb_examples = [celeb[0] for celeb in Hollywood_celeb_list]
business_celeb_examples = [celeb[0] for celeb in Business_celeb_list]
task_explanation_examples = AskPicturizeIt.TASK_EXPLANATION_EXAMPLES
product_def_question_examples = AskPicturizeIt.PRODUCT_DEF_QUESTION_EXAMPLES
article_links_examples = AskPicturizeIt.ARTICLE_LINKS_EXAMPLES
pdf_examples = kb.PDF_Examples()
youtube_links_examples = kb.YouTube_Examples()
celeb_search_questions = AskPicturizeIt.CELEB_SEARCH_QUESTIONS_EXAMPLES
'''
UI Components
'''
def generated_images_gallery_on_select(evt: gr.SelectData, generated_images_gallery):
if evt.index >= 0:
name = generated_images_gallery[evt.index]["name"]
output_generated_image = name
return output_generated_image
else:
return None
'''
test handlers
'''
def elevenlabs_test_handler(api_key: str, test_string: str, test_voice: str):
try:
voice_generator = ElevenlabsVoiceGenerator(api_key)
test_audio_file = voice_generator.generate_voice(test_voice, test_string)
return "Audio Generated", test_audio_file
except Exception as exception:
print(f"Exception Name: {type(exception).__name__}")
print(exception)
return f"{exception}", None
def assemblyai_test_handler(api_key, test_uri):
if not api_key:
return AskPicturizeIt.NO_ASSEMBLYAI_API_KEY_ERROR, ""
if not test_uri:
return "No audio file/uri", ""
try:
transcriber = AssemblyAITranscriber(api_key)
text = transcriber.transcribe(test_uri)
return text, text
except Exception as exception:
print(f"Exception Name: {type(exception).__name__}")
print(exception)
return f"{exception}", None
def test_stability_ai_handler(api_key, test_style_preset, test_prompt, test_init_image, test_steps):
if api_key:
try:
stability_api = StabilityAPI(api_key)
'''
Common parameters
cfg_scale=7 (default) 0 - 35, How strictly the diffusion process adheres to the prompt text (higher values keep your image closer to your prompt)
clip_guidance_preset="FAST_BLUE" - FAST_BLUE FAST_GREEN NONE SIMPLE SLOW SLOWER SLOWEST
samples = 1, between 1-10
steps = 30 between 10-150
seed between 0 .. 4294967295, default: 0 Random noise seed (omit this option or use 0 for a random seed)
'''
if test_init_image:
'''
init_image, text_prompts, style_preset = "photographic",
init_image_mode IMAGE_STRENGTH or STEP_SCHEDULE
# IMAGE_STRENGTH
# image_strength=0.35 (default) - between 0-1 or
# STEP_SCHEDULE - start and end between 0-1
# step_schedule_start 0.65 (default)
# and step_schedule_end
'''
output_generated_image = stability_api.image_to_image(
init_image = test_init_image,
text_prompts = test_prompt,
style_preset = test_style_preset,
samples = 1,
steps = test_steps)
return "Image variation generated using stability AI ", output_generated_image
else:
'''
text_prompts, style_preset = "photographic",
height=512, width=512,
'''
output_generated_image = stability_api.text_to_image(
text_prompts = [test_prompt],
style_preset = test_style_preset,
samples = 1,
steps = test_steps)
return "Image generated using stability AI ", output_generated_image
except Exception as err:
return f"{err}", None
else:
return AskPicturizeIt.NO_STABILITYAI_API_KEY_ERROR, None
def clear_celeb_details():
return "", "", "", "", None, None, None, None
with gr.Blocks(css='https://cdn.amitpuri.com/ask-picturize-it.css') as AskMeTabbedScreen:
gr.Markdown(AskPicturizeIt.TITLE)
with gr.Tab("Information"):
gr.HTML(AskPicturizeIt.DESCRIPTION)
gr.HTML(AskPicturizeIt.RESEARCH_SECTION)
gr.HTML(AskPicturizeIt.SECTION_FOOTER)
with gr.Tab("Configuration"):
with gr.Tab("AI provider settings"):
with gr.Group():
with gr.Row():
llm_input_language = gr.Dropdown(["English"],
value="English", label="Input Language", info="Select a language")
llm_output_language = gr.Dropdown(["English"],
value="English", label="Output Language", info="Select a language")
with gr.Tab("OpenAI API"):
gr.HTML(AskPicturizeIt.OPENAI_HTML)
with gr.Row():
with gr.Column():
input_key = gr.Textbox(
label="OpenAI API Key", value=os.getenv("OPENAI_API_KEY"), type="password")
org_id = gr.Textbox(
label="OpenAI ORG ID (only for org account)", value=os.getenv("OPENAI_ORG_ID"), type="password")
openai_model = gr.Dropdown(AskPicturizeIt.openai_models, value="gpt-4", label="Model", info="Select one, for Natural language")
with gr.Tab("Azure OpenAI API"):
gr.HTML(AskPicturizeIt.AZURE_OPENAI_HTML)
with gr.Row():
with gr.Column():
azure_openai_key = gr.Textbox(
label="Azure OpenAI API Key", value=os.getenv("AZURE_OPENAI_API_KEY"), type="password")
azure_openai_api_base = gr.Textbox(
label="Azure OpenAI API Endpoint", value=os.getenv("AZURE_OPENAI_ENDPOINT"), type="password")
azure_openai_deployment_name = gr.Textbox(
label="Azure OpenAI API Deployment Name", value=os.getenv("AZURE_OPENAI_DEPLOYMENT_NAME"), type="password")
with gr.Tab("Google API"):
google_model_name = gr.Dropdown(AskPicturizeIt.google_palm_models,
value="models/text-bison-001", label="Model", info="Select one, for Natural language")
with gr.Tab("Google PaLM API"):
gr.HTML(AskPicturizeIt.GOOGLE_PALMAPI_HTML)
with gr.Row():
with gr.Column():
google_generative_api_key = gr.Textbox(
label="Google Generative AI API Key", value=os.getenv("LANGUAGE_MODEL_API_KEY"), type="password")
with gr.Tab("PaLM API on Vertex AI"):
gr.HTML("<p>an enterprise version of PaLM</p>")
with gr.Row():
with gr.Column():
google_project_id = gr.Textbox(
label="Google Cloud Project ID", value=os.getenv("GCP_PROJECT_ID"), type="password")
google_credentials = gr.Textbox(
label="Google Application Credentials", value=os.getenv("GOOGLE_APPLICATION_CREDENTIALS"), type="password")
google_model_locations = gr.Dropdown([
"us-central1",
"us-east1",
"us-west1",
"us-west2",
"europe-west1",
"asia-east1",
"asia-southeast1",
"australia-southeast1",
], value="us-east1", label="Location", info="Select a location")
with gr.Tab("AssemblyAI API"):
gr.HTML(AskPicturizeIt.ASSEMBLY_AI_HTML)
with gr.Row():
with gr.Column():
assemblyai_api_key = gr.Textbox(label="AssemblyAI API Key", value=os.getenv("ASSEMBLYAI_API_KEY"), type="password")
with gr.Tab("StabilityAI API"):
gr.HTML(AskPicturizeIt.STABILITY_AI_HTML)
with gr.Row():
stabilityai_api_key = gr.Textbox(label="StabilityAI API Key", value=os.getenv("STABILITYAI_API_KEY"), type="password")
with gr.Tab("Elevenlabs API"):
gr.HTML(AskPicturizeIt.ELEVENLABS_HTML)
elevenlabs_api_key = gr.Textbox(label="Elevenlabs API Key", value=os.getenv("ELEVEN_API_KEY"), type="password")
with gr.Tab("Rapid API"):
gr.HTML(AskPicturizeIt.RAPIDAPI_HTML)
with gr.Row():
with gr.Column():
gr.HTML(AskPicturizeIt.RAPIDAPI_ARTICLE_HTML)
rapidapi_api_key = gr.Textbox(label="API Key", value=os.getenv("RAPIDAPI_KEY"), type="password")
with gr.Tab("MongoDB"):
gr.HTML(AskPicturizeIt.MONGODB_HTML)
with gr.Row():
with gr.Column(scale=3):
mongo_config = gr.Checkbox(label="MongoDB config", info="Use your own MongoDB", value=os.getenv("USE_MONGODB_CONFIG"))
mongo_connection_string = gr.Textbox(
label="MongoDB Connection string", value=os.getenv("MONGODB_URI"), type="password")
with gr.Column():
mongo_database = gr.Textbox(
label="MongoDB database", value=os.getenv("MONGODB_DATABASE"))
with gr.Tab("Cloudinary"):
gr.HTML(AskPicturizeIt.CLOUDINARY_HTML)
with gr.Row():
with gr.Column():
cloudinary_cloud_name = gr.Textbox(
label="Cloudinary Cloud name", value=os.getenv("CLOUDINARY_CLOUD_NAME"))
cloudinary_folder = gr.Textbox(
label="Cloudinary folder", value=os.getenv("CLOUDINARY_FOLDER"))
with gr.Column():
cloudinary_api_key = gr.Textbox(
label="Cloudinary API Key", value=os.getenv("CLOUDINARY_API_KEY"), type="password")
cloudinary_api_secret = gr.Textbox(
label="Cloudinary API Secret", value=os.getenv("CLOUDINARY_API_SECRET"), type="password")
with gr.Group():
with gr.Row():
input_num_images = gr.Slider(minimum=1,maximum=10,step=1,
label="Number of Images to generate", value=1, info="OpenAI API supports 1-10 images")
input_imagesize = gr.Dropdown(["1024x1024", "512x512", "256x256"],
value="256x256", label="Image size",
info=AskPicturizeIt.imagesize_text )
with gr.Tab("LLMs scenarios"):
with gr.Tab("Text-to-Text (Text Completion)"):
openai_selection = gr.Radio(AskPicturizeIt.llm_api_options, label="Select one", info="Which service do you want to use?", value="OpenAI API")
with gr.Row():
with gr.Column():
test_string = gr.Textbox(
label="Try String", value=AskPicturizeIt.TEST_MESSAGE, lines=2)
test_string_response = gr.Textbox(
label="Response")
test_string_output_info = gr.Label(value="Output Info", label="Info")
test_button = gr.Button("Try it")
with gr.Tab("Audio-to-Text"):
gr.HTML(AskPicturizeIt.ASSEMBLY_AI_HTML)
audio_model_selection = gr.Radio(AskPicturizeIt.audio_models, label="Select one", info="Which model do you want to use?", value="openai/whisper-1")
with gr.Row():
with gr.Column(scale=2):
speechbrain_test_upload = gr.Audio(label="Record or Upload", type="filepath", source="upload")
assemblyai_test_uri = gr.Audio(label="Audio to Text", type="filepath", source="microphone")
gr.Examples(
examples=hindi_audio_examples,
label="Select one from Hindi Audio Examples and Transcribe",
examples_per_page=5,
inputs=assemblyai_test_uri)
gr.Examples(
examples=audio_examples,
label="Select one from English Audio Examples and Transcribe",
examples_per_page=5,
inputs=assemblyai_test_uri)
with gr.Column(scale=1):
assemblyai_speechbrain_test_string = gr.Textbox(label="Transcription", lines=5)
with gr.Accordion("Options..", open=True):
audio_lang_selection = gr.Dropdown(["en","hi"], label="Select one", info="Audio Language", value="en")
with gr.Row():
assemblyai_test_button = gr.Button("Try transcribe")
assemblyai_speechbrain_clear = gr.Button("Clear")
assemblyai_test_string_output_info = gr.Label(value="Output Info", label="Info")
with gr.Tab("Text-to-Audio"):
text2audio_selection = gr.Radio(AskPicturizeIt.text2audio_medium, label="Select one", info="Which medium do you want to use?", value="elevanlabs")
with gr.Tab("Elevenlabs"):
gr.HTML(AskPicturizeIt.ELEVENLABS_HTML)
elevenlabs_voice = gr.Dropdown(AskPicturizeIt.elevenlabs_voices, value="Bella", label="Voice", info="Select a voice to generate audio")
with gr.Row():
with gr.Column():
elevenlabs_test_string = gr.Textbox(label="Text to Audio string", value=AskPicturizeIt.ELEVENLABS_TEST_MESSAGE, lines=2)
elevenlabs_test_string_output_info = gr.Label(value="Output Info", label="Info")
elevenlabs_test_button = gr.Button("Try Generating audio")
elevenlabs_test_audio_file = gr.Audio(label="Play the generated audio",type="filepath", value ="audio/english/AI as a tool that can augment and empower us, rather than compete or replace us.mp3")
with gr.Tab("Text-to-Image"):
gr.HTML(AskPicturizeIt.DIFFUSION_MODELS_HTML)
with gr.Row():
with gr.Column(scale=1):
diffusion_model_selection = gr.Radio(AskPicturizeIt.diffusion_models, label="Select one", info="Which model do you want to use?", value="prompthero/linkedin-diffusion")
diffusion_test_string = gr.Textbox(label="Prompt", value="a lnkdn photography of Sam Altman")
diffusion_test_button = gr.Button("Try it")
diffusion_output_info = gr.Label(value="Output Info", label="Info")
with gr.Column(scale=3):
diffusion_output_photo = gr.Image(label="Generated Image", type="filepath")
gr.Examples(
examples=AskPicturizeIt.coolest_midjourney_prompts,
label="Select one and try it",
examples_per_page=10,
inputs=diffusion_test_string)
with gr.Tab("Image-to-Image"):
text2image_selection = gr.Radio(AskPicturizeIt.text2image_medium, label="Select one", info="Which medium do you want to use?", value="StabilityAI")
with gr.Tab("Stability AI"):
gr.HTML(AskPicturizeIt.STABILITY_AI_HTML)
with gr.Row():
stabilityai_style_preset = gr.Dropdown(AskPicturizeIt.style_presets,
value="digital-art", label="Style preset", info="Select one style preset")
stabilityai_steps = gr.Slider(minimum=10, maximum=150, step=10, label="Number of diffusion steps to run", value=30, info="Diffusion steps")
image2image_string = gr.Textbox(label="Prompt", value="panda mad scientist mixing sparkling chemicals digital art")
with gr.Column(scale=2):
image2image_photo = gr.Image(label="Input Image", type="filepath", value="images/generated-image-panda.png")
with gr.Column(scale=1):
gr.Examples(
examples=images_examples,
label="Select one from Image Examples and get variation",
inputs=[image2image_photo],
examples_per_page=10,
outputs=image2image_photo,
)
image2image_output_photo = gr.Image(label="output Image", type="filepath")
with gr.Row():
with gr.Column():
image2image_button = gr.Button("Try it")
image2image_output_info = gr.Label(value="Output Info", label="Info")
with gr.Tab("Text-to-Video"):
gr.HTML(AskPicturizeIt.TEXT_TO_VIDEO_HTML)
gr.HTML("Work in progress....")
with gr.Tab("Record, transcribe, picturize and upload"):
gr.HTML("<p>Record voice, transcribe a prompt, picturize the prompt, create variations, and upload in Output tab</p>")
with gr.Tab("Whisper(whisper-1)"):
with gr.Row():
with gr.Column(scale=3):
audio_file = gr.Audio(
label="Upload Audio, or Record to describe what you want to picturize and click on Transcribe",
source="microphone",
value = "audio/english/AI as a tool that can augment and empower us, rather than compete or replace us.mp3",
type="filepath"
)
with gr.Column(scale=2):
gr.Examples(
examples=audio_examples,
label="Select one from Audio Examples and Transcribe",
examples_per_page=6,
inputs=audio_file)
transcribe_button = gr.Button("Transcribe via Whisper")
transcribe_whisper_large_v2_button = gr.Button("Transcribe via openai/whisper-large-v2")
input_transcriptionprompt = gr.Label(label="Transcription Text")
with gr.Tab("Image generation"):
input_prompt = gr.Textbox(label="Prompt Text to describe what you want to picturize?", lines=7)
with gr.Row():
with gr.Column(scale=1):
optimize_prompt_chatgpt_button = gr.Button("Optimize Prompt")
generate_button = gr.Button("Picture it via DALL-E")
generate_image_diffusion_button = gr.Button("*via stable-diffusion-2 model")
generate_image_stability_ai_button = gr.Button("via Stability AI")
label_generate_image_diffusion = gr.Label(value="* takes 30-50 mins on CPU", label="Warning")
with gr.Column(scale=5):
gr.Examples(
examples=input_examples,
label="Select one from Prompt Examples",
inputs=[input_prompt],
examples_per_page=10,
outputs=input_prompt,
)
label_picturize_it = gr.Label(value="Prompt in your words and picturize it", label="Info")
with gr.Tab("Image variation"):
with gr.Row():
input_image_variation = gr.Image(
label="Input Image", type="filepath")
gr.Examples(
examples=images_examples,
label="Select one from Image Examples and get variation",
inputs=[input_image_variation],
examples_per_page=10,
outputs=input_image_variation,
)
with gr.Row():
label_get_variation = gr.Label(
value="Get variation of your favorite celebs", label="Info")
with gr.Column():
generate_variations_button = gr.Button("Generate a variation via DALL-E")
generate_variations_image_stability_ai_button = gr.Button("via Stability AI")
with gr.Tab("Output"):
with gr.Row():
with gr.Column(scale=4):
with gr.Accordion("Generated Gallery", open=False):
generated_images_gallery = gr.Gallery(
label="Generated Images", preview="False", columns=4)
output_generated_image = gr.Image(label="Preview Image", type="filepath")
with gr.Column(scale=1):
output_cloudinary_button = gr.Button("Get images from Cloudinary")
generate_more_variations_button = gr.Button("More variations via DALL-E")
generate_more_image_stability_ai_button = gr.Button("via Stability AI")
name_variation_it = gr.Textbox(label="Name variation to upload")
variation_cloudinary_upload = gr.Button("Upload to Cloudinary")
label_upload_variation = gr.Label(value="Upload output", label="Output Info")
with gr.Tab("Use cases"):
usecases_llm_selection = gr.Radio(AskPicturizeIt.llm_api_options, label="Select one", info="Which service do you want to use?", value="OpenAI API")
with gr.Tab("Know your Celebrity"):
with gr.Tab("GPT Search"):
with gr.Row():
with gr.Column(scale=7):
celebs_name_chatbot = gr.Chatbot()
celebs_name_search = gr.Textbox(label="Question")
with gr.Column(scale=1):
celebs_name_search_label = gr.Label(value="GPT search output info", label="Info")
gr.Examples(
label="Search Questions",
examples=celeb_search_questions,
examples_per_page=6,
inputs=[celebs_name_search],
outputs=[celebs_name_search],
)
celebs_name_search_clear = gr.Button("Clear")
with gr.Tab("Celebrity"):
with gr.Row():
with gr.Column(scale=4):
celebs_name_label = gr.Textbox(label="Celebrity")
question_prompt = gr.Textbox(label="Prompt", lines=2)
key_traits = gr.Textbox(label="Key traits", lines=5)
with gr.Accordion("Celebrity Examples, select one from here", open=True):
with gr.Tab("Indian Film"):
with gr.Row():
gr.Examples(
label="Select one from a celebrity",
examples=IndianFilm_celeb_examples,
examples_per_page=100,
inputs=[celebs_name_label],
outputs=[question_prompt, key_traits],
)
with gr.Tab("Hollywood"):
with gr.Row():
gr.Examples(
label="Select one from a celebrity",
examples=hollywood_celeb_examples,
examples_per_page=100,
inputs=[celebs_name_label],
outputs=[question_prompt, key_traits],
)
with gr.Tab("Business"):
with gr.Row():
gr.Examples(
label="Select one from a celebrity",
examples=business_celeb_examples,
examples_per_page=100,
inputs=[celebs_name_label],
outputs=[question_prompt, key_traits],
)
with gr.Column(scale=1):
clear_celeb_details_button = gr.Button("Clear")
generate_image_prompt_text = gr.Textbox(label="Image generation prompt")
label_describe_gpt = gr.Label(value="Generate or Upload Image to Save", label="Info")
with gr.Accordion("Options..", open=True):
generate_celeb_image_stability_ai_button = gr.Button("via Stability AI")
celeb_variation_button = gr.Button("variation from the real photo (DALL-E 2)")
with gr.Row():
celeb_real_photo = gr.Image(label="Real Photo", type="filepath")
celeb_generated_image = gr.Image(label="AI Generated Image", type="filepath")
with gr.Row():
with gr.Column(scale=1):
know_your_celeb_description_wiki = gr.Textbox(label="Wiki summary", lines=13)
with gr.Column(scale=1):
know_your_celeb_description = gr.Textbox(label="Description from OpenAI ChatGPT", lines=7)
with gr.Row():
celeb_summarize_copy_button = gr.Button("Summarize Wiki output, copy to Description")
celeb_save_description_button = gr.Button("Save Description")
describe_button = gr.Button("Describe via ChatGPT and Save")
celeb_upload_save_real_generated_image_button = gr.Button("Upload, Save real & generated image")
label_upload_here = gr.Label(value=AskPicturizeIt.LABEL_GPT_CELEB_SCREEN, label="Info")
with gr.Tab("Summarizer"):
with gr.Tab("KB Search"):
with gr.Row():
with gr.Column(scale=4):
keyword_search = gr.Textbox(label="Keyword", placeholder="Search Arxiv, YouTube, wikipedia?")
gr.Examples(
label="Keyword examples",
examples=keyword_examples,
examples_per_page=150,
inputs=[keyword_search],
outputs=[keyword_search],
)
with gr.Column(scale=1):
max_results = gr.Slider(minimum=10,maximum=100,step=5,label="Max Results", value=10, info="Search results output")
select_medium = gr.Dropdown(["YouTube", "Arxiv","Wikipedia"], label="Search in", value="Arxiv", type="index" )
keyword_search_button = gr.Button("Search")
keyword_search_output = gr.JSON()
with gr.Tab("Summarizer via LLM using LangChain"):
gr.HTML(AskPicturizeIt.LANGCHAIN_TEXT)
with gr.Tab("YouTube"):
with gr.Row():
with gr.Column(scale=4):