forked from juntaoy/biaffine-ner
-
Notifications
You must be signed in to change notification settings - Fork 7
/
util.py
339 lines (282 loc) · 12.2 KB
/
util.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import os, io
import errno
import codecs
import collections
import shutil
import sys
import numpy as np
#import tensorflow as tf
import tensorflow.compat.v1 as tf
tf.compat.v1.disable_v2_behavior()
import pyhocon
def initialize_from_env():
name = sys.argv[1]
print("Running experiment: {}".format(name))
config = pyhocon.ConfigFactory.parse_file("experiments.conf")[name]
config["log_dir"] = mkdirs(os.path.join(config["log_root"], name))
print(pyhocon.HOCONConverter.convert(config, "hocon"))
return config
def copy_checkpoint(source, target):
for ext in (".index", ".data-00000-of-00001"):
shutil.copyfile(source + ext, target + ext)
def make_summary(value_dict):
return tf.Summary(value=[tf.Summary.Value(tag=k, simple_value=v) for k,v in value_dict.items()])
def flatten(l):
return [item for sublist in l for item in sublist]
def mkdirs(path):
try:
os.makedirs(path)
except OSError as exception:
if exception.errno != errno.EEXIST:
raise
return path
def load_char_dict(char_vocab_path):
vocab = [u"<unk>"]
with codecs.open(char_vocab_path, encoding="utf-8") as f:
vocab.extend(l.strip() for l in f.readlines())
char_dict = collections.defaultdict(int)
char_dict.update({c:i for i, c in enumerate(vocab)})
return char_dict
def maybe_divide(x, y):
return 0 if y == 0 else x / float(y)
def projection(inputs, output_size, initializer=None):
return ffnn(inputs, 0, -1, output_size, dropout=None, output_weights_initializer=initializer)
def highway(inputs, num_layers, dropout):
for i in range(num_layers):
with tf.variable_scope("highway_{}".format(i)):
j, f = tf.split(projection(inputs, 2 * shape(inputs, -1)), 2, -1)
f = tf.sigmoid(f)
j = tf.nn.relu(j)
if dropout is not None:
j = tf.nn.dropout(j, dropout)
inputs = f * j + (1 - f) * inputs
return inputs
def shape(x, dim):
return x.get_shape()[dim].value or tf.shape(x)[dim]
def ffnn(inputs, num_hidden_layers, hidden_size, output_size, dropout, output_weights_initializer=None):
if len(inputs.get_shape()) > 3:
raise ValueError("FFNN with rank {} not supported".format(len(inputs.get_shape())))
if len(inputs.get_shape()) == 3:
batch_size = shape(inputs, 0)
seqlen = shape(inputs, 1)
emb_size = shape(inputs, 2)
current_inputs = tf.reshape(inputs, [batch_size * seqlen, emb_size])
else:
current_inputs = inputs
for i in range(num_hidden_layers):
hidden_weights = tf.get_variable("hidden_weights_{}".format(i), [shape(current_inputs, 1), hidden_size])
hidden_bias = tf.get_variable("hidden_bias_{}".format(i), [hidden_size])
current_outputs = tf.nn.relu(tf.nn.xw_plus_b(current_inputs, hidden_weights, hidden_bias))
if dropout is not None:
current_outputs = tf.nn.dropout(current_outputs, dropout)
current_inputs = current_outputs
output_weights = tf.get_variable("output_weights", [shape(current_inputs, 1), output_size], initializer=output_weights_initializer)
output_bias = tf.get_variable("output_bias", [output_size])
outputs = tf.nn.xw_plus_b(current_inputs, output_weights, output_bias)
if len(inputs.get_shape()) == 3:
outputs = tf.reshape(outputs, [batch_size, seqlen, output_size])
return outputs
def cnn(inputs, filter_sizes, num_filters):
input_size = shape(inputs, 2)
outputs = []
for i, filter_size in enumerate(filter_sizes):
with tf.variable_scope("conv_{}".format(i)):
w = tf.get_variable("w", [filter_size, input_size, num_filters])
b = tf.get_variable("b", [num_filters])
conv = tf.nn.conv1d(inputs, w, stride=1, padding="VALID") # [num_words, num_chars - filter_size, num_filters]
h = tf.nn.relu(tf.nn.bias_add(conv, b)) # [num_words, num_chars - filter_size, num_filters]
pooled = tf.reduce_max(h, 1) # [num_words, num_filters]
outputs.append(pooled)
return tf.concat(outputs, 1) # [num_words, num_filters * len(filter_sizes)]
def bilinear_classifier(x_bnv, y_bnv, keep_prob, output_size = 1, add_bias_1=True, add_bias_2=True):
"""biaffine_mapping() with dropout."""
# Statically known input dimensions.
input_size = x_bnv.get_shape().as_list()[-1]
# Dynamically known input dimensions
batch_size = tf.shape(x_bnv)[0]
noise_shape = [batch_size, 1, input_size]
x_bnv = tf.nn.dropout(x_bnv, keep_prob, noise_shape=noise_shape)
y_bnv = tf.nn.dropout(y_bnv, keep_prob, noise_shape=noise_shape)
biaffine = biaffine_mapping(
x_bnv,
y_bnv,
output_size,
add_bias_1=add_bias_1,
add_bias_2=add_bias_2,
initializer=tf.zeros_initializer())
if output_size == 1:
output = tf.squeeze(biaffine,axis=2)
else:
output = tf.transpose(biaffine,[0,1,3,2])
return output
def biaffine_mapping(vector_set_1,
vector_set_2,
output_size,
add_bias_1=True,
add_bias_2=True,
initializer= None):
"""Bilinear mapping: maps two vector spaces to a third vector space.
The input vector spaces are two 3d matrices: batch size x bucket size x values
A typical application of the function is to compute a square matrix
representing a dependency tree. The output is for each bucket a square
matrix of the form [bucket size, output size, bucket size]. If the output size
is set to 1 then results is [bucket size, 1, bucket size] equivalent to
a square matrix where the bucket for instance represent the tokens on
the x-axis and y-axis. In this way represent the adjacency matrix of a
dependency graph (see https://arxiv.org/abs/1611.01734).
Args:
vector_set_1: vectors of space one
vector_set_2: vectors of space two
output_size: number of output labels (e.g. edge labels)
add_bias_1: Whether to add a bias for input one
add_bias_2: Whether to add a bias for input two
initializer: Initializer for the bilinear weight map
Returns:
Output vector space as 4d matrix:
batch size x bucket size x output size x bucket size
The output could represent an unlabeled dependency tree when
the output size is 1 or a labeled tree otherwise.
"""
with tf.variable_scope('Bilinear'):
# Dynamic shape info
batch_size = tf.shape(vector_set_1)[0]
bucket_size = tf.shape(vector_set_1)[1]
if add_bias_1:
vector_set_1 = tf.concat(
[vector_set_1, tf.ones([batch_size, bucket_size, 1])], axis=2)
if add_bias_2:
vector_set_2 = tf.concat(
[vector_set_2, tf.ones([batch_size, bucket_size, 1])], axis=2)
# Static shape info
vector_set_1_size = vector_set_1.get_shape().as_list()[-1]
vector_set_2_size = vector_set_2.get_shape().as_list()[-1]
if not initializer:
initializer = tf.orthogonal_initializer()
# Mapping matrix
bilinear_map = tf.get_variable(
'bilinear_map', [vector_set_1_size, output_size, vector_set_2_size],
initializer=initializer)
# The matrix operations and reshapings for bilinear mapping.
# b: batch size (batch of buckets)
# v1, v2: values (size of vectors)
# n: tokens (size of bucket)
# r: labels (output size), e.g. 1 if unlabeled or number of edge labels.
# [b, n, v1] -> [b*n, v1]
vector_set_1 = tf.reshape(vector_set_1, [-1, vector_set_1_size])
# [v1, r, v2] -> [v1, r*v2]
bilinear_map = tf.reshape(bilinear_map, [vector_set_1_size, -1])
# [b*n, v1] x [v1, r*v2] -> [b*n, r*v2]
bilinear_mapping = tf.matmul(vector_set_1, bilinear_map)
# [b*n, r*v2] -> [b, n*r, v2]
bilinear_mapping = tf.reshape(
bilinear_mapping,
[batch_size, bucket_size * output_size, vector_set_2_size])
# [b, n*r, v2] x [b, n, v2]T -> [b, n*r, n]
bilinear_mapping = tf.matmul(bilinear_mapping, vector_set_2, adjoint_b=True)
# [b, n*r, n] -> [b, n, r, n]
bilinear_mapping = tf.reshape(
bilinear_mapping, [batch_size, bucket_size, output_size, bucket_size])
return bilinear_mapping
class EmbeddingDictionary(object):
def __init__(self, info, normalize=True, maybe_cache=None):
self._size = info["size"]
self._normalize = normalize
self._path = info["path"]
if maybe_cache is not None and maybe_cache._path == self._path:
assert self._size == maybe_cache._size
self._embeddings = maybe_cache._embeddings
else:
self._embeddings = self.load_embedding_dict(self._path)
@property
def size(self):
return self._size
def load_embedding_dict(self, path):
print("Loading word embeddings from {}...".format(path))
default_embedding = np.zeros(self.size)
embedding_dict = collections.defaultdict(lambda:default_embedding)
if len(path) > 0:
vocab_size = None
with io.open(path,encoding="utf8") as f:
for i, line in enumerate(f.readlines()):
if i == 0 and line.count(" ") == 1: # header row
continue
word_end = line.find(" ")
word = line[:word_end]
embedding = np.fromstring(line[word_end + 1:], np.float32, sep=" ")
assert len(embedding) == self.size
embedding_dict[word] = embedding
if vocab_size is not None:
assert vocab_size == len(embedding_dict)
print("Done loading word embeddings.")
return embedding_dict
def is_in_embeddings(self, key):
return key in self._embeddings
#return self._embeddings.has_key(key)
def __getitem__(self, key):
embedding = self._embeddings[key]
if self._normalize:
embedding = self.normalize(embedding)
return embedding
def normalize(self, v):
norm = np.linalg.norm(v)
if norm > 0:
return v / norm
else:
return v
# class CustomLSTMCell(tf.contrib.rnn.RNNCell):
class CustomLSTMCell(tf.compat.v1.nn.rnn_cell.RNNCell):
def __init__(self, num_units, batch_size, dropout):
self._num_units = num_units
self._dropout = dropout
self._dropout_mask = tf.nn.dropout(tf.ones([batch_size, self.output_size]), dropout)
self._initializer = self._block_orthonormal_initializer([self.output_size] * 3)
initial_cell_state = tf.get_variable("lstm_initial_cell_state", [1, self.output_size])
initial_hidden_state = tf.get_variable("lstm_initial_hidden_state", [1, self.output_size])
# self._initial_state = tf.contrib.rnn.LSTMStateTuple(initial_cell_state, initial_hidden_state)
self._initial_state = tf.compat.v1.nn.rnn_cell.LSTMStateTuple(initial_cell_state, initial_hidden_state)
@property
def state_size(self):
#return tf.contrib.rnn.LSTMStateTuple(self.output_size, self.output_size)
return tf.compat.v1.nn.rnn_cell.LSTMStateTuple(self.output_size, self.output_size)
@property
def output_size(self):
return self._num_units
@property
def initial_state(self):
return self._initial_state
def __call__(self, inputs, state, scope=None):
"""Long short-term memory cell (LSTM)."""
with tf.variable_scope(scope or type(self).__name__): # "CustomLSTMCell"
c, h = state
h *= self._dropout_mask
concat = projection(tf.concat([inputs, h], 1), 3 * self.output_size, initializer=self._initializer)
i, j, o = tf.split(concat, num_or_size_splits=3, axis=1)
i = tf.sigmoid(i)
new_c = (1 - i) * c + i * tf.tanh(j)
new_h = tf.tanh(new_c) * tf.sigmoid(o)
#new_state = tf.contrib.rnn.LSTMStateTuple(new_c, new_h)
new_state = tf.compat.v1.nn.rnn_cell.LSTMStateTuple(new_c, new_h)
return new_h, new_state
def _orthonormal_initializer(self, scale=1.0):
def _initializer(shape, dtype=tf.float32, partition_info=None):
M1 = np.random.randn(shape[0], shape[0]).astype(np.float32)
M2 = np.random.randn(shape[1], shape[1]).astype(np.float32)
Q1, R1 = np.linalg.qr(M1)
Q2, R2 = np.linalg.qr(M2)
Q1 = Q1 * np.sign(np.diag(R1))
Q2 = Q2 * np.sign(np.diag(R2))
n_min = min(shape[0], shape[1])
params = np.dot(Q1[:, :n_min], Q2[:n_min, :]) * scale
return params
return _initializer
def _block_orthonormal_initializer(self, output_sizes):
def _initializer(shape, dtype=np.float32, partition_info=None):
assert len(shape) == 2
assert sum(output_sizes) == shape[1]
initializer = self._orthonormal_initializer()
params = np.concatenate([initializer([shape[0], o], dtype, partition_info) for o in output_sizes], 1)
return params
return _initializer