-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathtrain_adapter.py
527 lines (433 loc) · 24.1 KB
/
train_adapter.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
import os
import math
import wandb
import random
import logging
import inspect
import argparse
import datetime
import subprocess
import numpy as np
from pathlib import Path
from tqdm.auto import tqdm
# from einops import rearrange
from omegaconf import OmegaConf
# from safetensors import safe_open
import torch
import torchvision
import torch.nn.functional as F
import torch.distributed as dist
from torch.utils.data.dataloader import DataLoader
from torch.utils.data.distributed import DistributedSampler
from torch.nn.parallel import DistributedDataParallel as DDP
import torchvision.transforms as T
from diffusers import AutoencoderKL, DDIMScheduler
from diffusers.models import UNet2DConditionModel
from diffusers.optimization import get_scheduler
from diffusers.utils.import_utils import is_xformers_available
from diffusers import T2IAdapter
from transformers import CLIPTextModel, CLIPTokenizer, CLIPVisionModel
from knobgen.utils import instantiate_from_config
from knobgen.utils import load_checkpoint, save_checkpoint
from knobgen.diff_pipeline.pipeline_stable_diffusion_adapter import StableDiffusionFixAdapterPipeline
def set_seed(seed):
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed) # if you are using multi-GPU.
np.random.seed(seed)
random.seed(seed)
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
def init_dist(launcher="slurm", backend='nccl', port=29500, **kwargs):
"""Initializes distributed environment."""
if launcher == 'pytorch':
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
rank = int(os.environ['RANK'])
local_rank = rank % num_gpus
torch.cuda.set_device(local_rank)
dist.init_process_group(backend=backend, **kwargs)
else:
rank = int(os.environ['RANK'])
dist.init_process_group(backend='gloo', **kwargs)
return 0
elif launcher == 'slurm':
proc_id = int(os.environ['SLURM_PROCID'])
ntasks = int(os.environ['SLURM_NTASKS'])
node_list = os.environ['SLURM_NODELIST']
num_gpus = torch.cuda.device_count()
local_rank = proc_id % num_gpus
torch.cuda.set_device(local_rank)
addr = subprocess.getoutput(
f'scontrol show hostname {node_list} | head -n1')
os.environ['MASTER_ADDR'] = addr
os.environ['WORLD_SIZE'] = str(ntasks)
os.environ['RANK'] = str(proc_id)
port = os.environ.get('PORT', port)
os.environ['MASTER_PORT'] = str(port)
dist.init_process_group(backend=backend)
print(f"proc_id: {proc_id}; local_rank: {local_rank}; ntasks: {ntasks}; node_list: {node_list}; num_gpus: {num_gpus}; addr: {addr}; port: {port}")
else:
raise NotImplementedError(f'Not implemented launcher type: `{launcher}`!')
return local_rank
def tanh_scheduler(epoch, num_epochs, min_value=0.20, max_value=1.0):
if epoch >= num_epochs:
return 1.0
# Calculate progress as a fraction of the total epochs
progress = epoch / num_epochs
# Apply tanh to the progress (scaling it to the tanh range)
tanh_progress = torch.tanh(torch.tensor(progress * 6 - 3)) # Scale to tanh range (-3, 3)
# Scale tanh output from (-1, 1) to (0, 1)
scaled_progress = (tanh_progress + 1) / 2
# Scale to the range [min_value, max_value]
result = min_value + scaled_progress * (max_value - min_value)
return result.item()
def main(
name: str,
use_wandb: bool,
launcher: str,
config: dict
):
is_debug = config.train.is_debug
# Initialize distributed training
local_rank = init_dist(launcher=launcher)
global_rank = dist.get_rank()
num_processes = dist.get_world_size()
is_main_process = global_rank == 0
device = torch.device('cuda', local_rank)
seed = config.train.global_seed + global_rank
set_seed(seed)
# Logging folder
folder_name = "debug" if is_debug else name + datetime.datetime.now().strftime("-%Y-%m-%dT%H-%M-%S")
output_dir = os.path.join(config.train.output_dir, folder_name)
if is_debug and os.path.exists(output_dir) and is_main_process:
os.system(f"rm -rf {output_dir}")
# Make one log on every process with the configuration for debugging.
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
if is_main_process and (not is_debug) and use_wandb:
run = wandb.init(project="conffusion", name=folder_name, config=config)
# Handle the output folder creation
if is_main_process:
os.makedirs(output_dir, exist_ok=True)
os.makedirs(f"{output_dir}/samples", exist_ok=True)
os.makedirs(f"{output_dir}/sanity_check", exist_ok=True)
os.makedirs(f"{output_dir}/checkpoints", exist_ok=True)
OmegaConf.save(config, os.path.join(output_dir, 'config.yaml'))
# Load scheduler, tokenizer and models.
noise_scheduler = DDIMScheduler(**OmegaConf.to_container(config.train.noise_scheduler_kwargs))
vae = AutoencoderKL.from_pretrained(config.train.pretrained_model_path, subfolder="vae")
tokenizer = CLIPTokenizer.from_pretrained(config.train.pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(config.train.pretrained_model_path, subfolder="text_encoder")
image_encoder = CLIPVisionModel.from_pretrained(config.train.pretrained_image_encoder)
unet = UNet2DConditionModel.from_pretrained(config.train.pretrained_model_path, subfolder="unet")
adapter = T2IAdapter.from_pretrained(config.train.pretrained_adapter_sketch)
vision_condition = instantiate_from_config(config.model)
# Get the training dataset
train_dataset = instantiate_from_config(config.dataset.train)
valid_dataset = instantiate_from_config(config.dataset.validation)
distributed_sampler = DistributedSampler(
train_dataset,
num_replicas=num_processes,
rank=local_rank,
shuffle=True,
seed=config.train.global_seed,
)
# DataLoaders creation:
train_dataloader = DataLoader(train_dataset,
sampler=distributed_sampler,
num_workers=config.train.num_workers,
batch_size=config.train.train_batch_size,
shuffle=False,
pin_memory=True,
drop_last=True)
valid_dataloader = DataLoader(valid_dataset,
num_workers=config.train.num_workers,
batch_size=config.train.valid_batch_size,
shuffle=False,
pin_memory=True,
drop_last=False)
# Get the training iteration
max_train_steps = config.train.max_train_steps
max_train_epoch = config.train.max_train_epoch
if max_train_steps == -1:
assert max_train_epoch != -1
max_train_steps = max_train_epoch * len(train_dataloader)
checkpointing_steps = config.train.checkpointing_steps
checkpointing_epochs = config.train.checkpointing_epochs
if checkpointing_steps == -1:
assert checkpointing_epochs != -1
checkpointing_steps = checkpointing_epochs * len(train_dataloader)
trainable_params = list(vision_condition.parameters())
# Move models to GPU
vae.to(local_rank)
text_encoder.to(local_rank)
unet.to(local_rank)
vision_condition.to(local_rank)
image_encoder.to(local_rank)
adapter.to(local_rank)
optimizer = torch.optim.AdamW(
trainable_params,
lr=config.optimize.learning_rate,
betas=(config.optimize.adam_beta1, config.optimize.adam_beta2),
weight_decay=config.optimize.adam_weight_decay,
eps=config.optimize.adam_epsilon,
)
# Scheduler
lr_scheduler = get_scheduler(
config.optimize.lr_scheduler,
optimizer=optimizer,
num_warmup_steps=config.optimize.lr_warmup_steps * config.optimize.gradient_accumulation_steps,
num_training_steps=max_train_steps * config.optimize.gradient_accumulation_steps,
)
if is_main_process:
logging.info(f"trainable params number: {len(trainable_params)}")
logging.info(f"trainable params scale: {sum(p.numel() for p in trainable_params) / 1e6:.3f} M")
# Load pretrained unet weights
vision_condition, optimizer, lr_scheduler, _, start_epoch, _ = load_checkpoint(vision_condition,
optimizer,
lr_scheduler,
config.train.checkpoint_path,
logging,
is_main_process)
# Freeze vae and text_encoder
vae.requires_grad_(False)
text_encoder.requires_grad_(False)
unet.requires_grad_(False)
image_encoder.requires_grad_(False)
adapter.requires_grad_(False)
vision_condition.requires_grad_(True)
# Enable xformers
if config.train.enable_xformers_memory_efficient_attention:
if is_xformers_available():
unet.enable_xformers_memory_efficient_attention()
else:
raise ValueError("xformers is not available. Make sure it is installed correctly")
# Enable gradient checkpointing
if config.train.gradient_checkpointing:
unet.enable_gradient_checkpointing()
learning_rate = config.optimize.learning_rate
if config.train.scale_lr:
learning_rate = (learning_rate * config.optimize.radient_accumulation_steps * config.train.train_batch_size * num_processes)
# We need to recalculate our total training steps as the size of the training dataloader may have changed.
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / config.optimize.gradient_accumulation_steps)
# Afterwards we recalculate our number of training epochs
num_train_epochs = math.ceil(max_train_steps / num_update_steps_per_epoch)
# Train!
total_batch_size = config.train.train_batch_size * num_processes * config.optimize.gradient_accumulation_steps
if is_main_process:
logging.info("***** Running training *****")
logging.info(f" Num examples = {len(train_dataset)}")
logging.info(f" Num Epochs = {num_train_epochs}")
logging.info(f" Instantaneous batch size per device = {config.train.train_batch_size}")
logging.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logging.info(f" Gradient Accumulation steps = {config.optimize.gradient_accumulation_steps}")
logging.info(f" Total optimization steps = {max_train_steps}")
global_step = start_epoch * len(train_dataloader)
first_epoch = start_epoch
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, max_train_steps), disable=not is_main_process)
progress_bar.set_description("Steps")
# Support mixed-precision training
scaler = torch.cuda.amp.GradScaler() if config.train.mixed_precision_training else None
vision_condition = DDP(vision_condition, device_ids=[local_rank], output_device=local_rank)
for epoch in range(first_epoch, num_train_epochs):
vae.eval()
text_encoder.eval()
image_encoder.eval()
unet.eval()
adapter.eval()
vision_condition.train()
if isinstance(train_dataloader.sampler, DistributedSampler):
train_dataloader.sampler.set_epoch(epoch)
epoch_loss = 0.0
num_batches = len(train_dataloader)
rand_temp = tanh_scheduler(epoch, num_train_epochs - 500)
for step, batch in enumerate(train_dataloader):
# Data batch sanity check
if epoch == first_epoch and step == 0 and is_main_process:
target_imgs, texts, condition_images = batch['target_image'].cpu(), batch['prompt'], batch['condition_images']
condition_images = condition_images.squeeze(1)
condition_images = condition_images[:, 0, :, :]
for idx, (target_img, text, cond_img) in enumerate(zip(target_imgs, texts, condition_images)):
target_img = target_img / 2. + 0.5
torchvision.utils.save_image(target_img, f"{output_dir}/sanity_check/{'-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'{local_rank}-{idx}'}.jpg")
torchvision.utils.save_image(cond_img, f"{output_dir}/sanity_check/cond_{'-'.join(text.replace('/', '').split()[:10]) if not text == '' else f'{local_rank}-{idx}'}.jpg")
### >>>> Training >>>> ###
# Convert videos to latent space
target_image = batch["target_image"].to(local_rank)
with torch.no_grad():
latents = vae.encode(target_image).latent_dist
latents = latents.sample()
latents = latents * 0.18215
# Sample noise that we'll add to the latents
noise = torch.randn_like(latents)
bsz = latents.shape[0]
# Sample a random timestep for each video
timesteps = torch.randint(0, noise_scheduler.config.num_train_timesteps, (bsz,), device=latents.device)
timesteps = timesteps.long()
# Add noise to the latents according to the noise magnitude at each timestep
# (this is the forward diffusion process)
noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps)
# Get the text embedding for conditioning
with torch.no_grad():
prompt_ids = tokenizer(
batch['prompt'], max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt"
).input_ids.to(latents.device)
encoder_hidden_states = text_encoder(prompt_ids)[0]
# Get the target for loss depending on the prediction type
if noise_scheduler.config.prediction_type == "epsilon":
target = noise
elif noise_scheduler.config.prediction_type == "v_prediction":
raise NotImplementedError
else:
raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}")
# Predict the noise residual and compute loss
# Mixed-precision training
with torch.cuda.amp.autocast(enabled=config.train.mixed_precision_training):
condition_images = batch['condition_images'].to(local_rank).squeeze(1)
resize = T.Resize((224, 224))
condition_images_resized = resize(condition_images)
# encoded_condition_image = image_encoder(pixel_values=condition_images_resized).pooler_output.unsqueeze(1)
encoded_condition_image = image_encoder(pixel_values=condition_images_resized).last_hidden_state[:, 1:, :]
condition_images = condition_images[:, 0, :, :].unsqueeze(1)
vision_fine_grained = adapter(condition_images)
if config.train.random_contion:
for ind_, _ in enumerate(vision_fine_grained):
vision_fine_grained[ind_] = vision_fine_grained[ind_] * rand_temp
vision_language_coarse_grained = vision_condition(encoded_condition_image=encoded_condition_image,
encoder_hidden_states=encoder_hidden_states)
model_pred = unet(sample=noisy_latents,
timestep=timesteps,
encoder_hidden_states=vision_language_coarse_grained,
down_intrablock_additional_residuals=vision_fine_grained).sample
loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean")
optimizer.zero_grad()
# Backpropagate
if config.train.mixed_precision_training:
scaler.scale(loss).backward()
""" >>> gradient clipping >>> """
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(vision_condition.parameters(), config.train.max_grad_norm)
""" <<< gradient clipping <<< """
scaler.step(optimizer)
scaler.update()
else:
loss.backward()
""" >>> gradient clipping >>> """
torch.nn.utils.clip_grad_norm_(vision_condition.parameters(), config.train.max_grad_norm)
""" <<< gradient clipping <<< """
optimizer.step()
lr_scheduler.step()
if is_main_process:
progress_bar.update(1)
global_step += 1
### <<<< Training <<<< ###
# Wandb logging
if is_main_process and (not is_debug) and use_wandb:
wandb.log({"train_loss": loss.item()}, step=global_step)
epoch_loss += loss.item()
# if is_main_process:
# for name, param in vision_condition.named_parameters():
# if param.requires_grad:
# if param.grad is not None:
# print(f"Gradient for {name}: {param.grad.norm().item()}")
# else:
# print(f"No gradient for {name}")
# print("---------------------------------")
# print("condition_models.0.conv_in.bias")
# underlying_model = vision_condition.module
# bias_value = underlying_model.condition_models[0].conv_in.bias
# print(bias_value)
# print("---------------------------------")
# logging.info GPU memory usage
if step % 1000 == 0 and is_main_process: # Adjust the frequency as needed
logging.info(f"Epoch: {epoch}, Step: {step}, Allocated GPU memory: {torch.cuda.memory_allocated(local_rank)/1024**2:.2f} MB, Reserved GPU memory: {torch.cuda.memory_reserved(local_rank)/1024**2:.2f} MB")
# Save checkpoint
if is_main_process and (global_step % checkpointing_steps == 0 or step == num_train_epochs * len(train_dataloader) - 1):
save_checkpoint(vision_condition, optimizer, lr_scheduler,
output_dir, epoch, global_step, step,
train_dataloader, logging)
# Periodically validation
if is_main_process and (global_step % config.train.validation_steps == 0 or global_step in config.train.validation_steps_tuple):
logging.info("Validation is started")
generator = torch.Generator(device=latents.device)
generator.manual_seed(config.train.global_seed)
resolution = config.dataset.validation.params.resolution
height = resolution[0] if not isinstance(resolution, int) else resolution
width = resolution[1] if not isinstance(resolution, int) else resolution
# Validation pipeline
validation_pipeline = StableDiffusionFixAdapterPipeline.from_pretrained(
config.train.pretrained_model_path,
adapter=adapter,
).to(device)
validation_pipeline.enable_vae_slicing()
validation_pipeline.vision_condition = vision_condition
validation_pipeline.image_encoder = image_encoder
logging.info(f"Now the rand_temp is {rand_temp}")
for step_val, batch_val in enumerate(valid_dataloader):
condition_images = batch_val['condition_images'].to(local_rank).squeeze(1)
resize = T.Resize((224, 224))
condition_images_resized = resize(condition_images)
condition_images = condition_images[:, 0, :, :].unsqueeze(1)
prompts = batch_val['prompt']
for idx, prompt in enumerate(prompts):
logging.info(prompt)
sample = validation_pipeline(
prompt,
image = condition_images,
vision_encoder_img = condition_images_resized,
generator = generator,
height = height,
width = width,
num_inference_steps = config.dataset.validation.num_inference_steps,
guidance_scale = config.dataset.validation.guidance_scale,
rand_temp = 1.0
).images[0]
sample = torchvision.transforms.functional.to_tensor(sample)
combined_images = [sample.cpu()]
sample = validation_pipeline(
prompt,
image = condition_images,
vision_encoder_img = condition_images_resized,
generator = generator,
height = height,
width = width,
num_inference_steps = config.dataset.validation.num_inference_steps,
guidance_scale = config.dataset.validation.guidance_scale,
rand_temp = rand_temp
).images[0]
sample = torchvision.transforms.functional.to_tensor(sample)
combined_images.append(sample.cpu())
condition_image_rgb = condition_images[idx].repeat(3, 1, 1).cpu()
combined_images.append(condition_image_rgb)
# Stack and save the combined images
combined_images = torch.stack(combined_images)
directory = f"{output_dir}/samples/sample-{global_step}"
if not os.path.exists(directory):
os.makedirs(directory)
save_path = directory + f"/prompt_{'-'.join(prompt.replace('/', '').split()[:10]) if not prompt == '' else f'{local_rank}-{step_val}'}.png"
torchvision.utils.save_image(combined_images, save_path, nrow=len(combined_images))
logging.info(f"Saved samples to {save_path}")
logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]}
if is_main_process:
progress_bar.set_postfix(**logs)
if global_step >= max_train_steps:
break
if is_main_process:
epoch_loss /= num_batches
if (not is_debug) and use_wandb:
wandb.log({"epoch_loss": epoch_loss}, step=epoch)
logging.info(f"Epoch {epoch} loss: {epoch_loss}")
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='configs/multigen20.yaml')
parser.add_argument("--launcher", type=str, choices=["pytorch", "slurm"], default="pytorch")
parser.add_argument("--wandb", action="store_true")
args = parser.parse_args()
name = Path(args.config).stem
config = OmegaConf.load(args.config)
main(name=name, launcher=args.launcher, use_wandb=args.wandb, config=config)